
Connecting Perebor Conjectures: Towards a1

Search to Decision Reduction for Minimizing2

Formulas3

Rahul Ilango4

Massachusetts Institute of Technology, USA5

rilango@mit.edu6

Abstract7

A longstanding open question is whether the search and decision formulations of the Minimum8

Circuit Size Problem are equivalent. While it is widely conjectured that computing either version9

requires “perebor,” or brute-force search, researchers have not yet ruled out the possibility that the10

search problem requires exponential time but the decision problem has a linear time algorithm.11

In this paper, we make progress in connecting the search and decision complexity of minimizing12

formulas. Let MFSP denote the problem that takes as input the truth table of a Boolean function13

f and an integer size parameter s and decides whether there is a formula for f of size at most s.14

Let Search-MFSP denote the corresponding search problem where one has to output some optimal15

formula for computing f .16

Our main result is that given an oracle to MFSP, one can solve Search-MFSP in time polynomial17

in the length N of the truth table of f and the number t of “near-optimal” formulas for f , in18

particular O(N6t2)-time. While the quantity t is not well understood, we use this result (and some19

extensions) to prove that given an oracle to MFSP:20

there is a deterministic 2O( N
log log N

)-time oracle algorithm for solving Search-MFSP on all but a21

o(1)-fraction of instances, and22

there is a randomized O(2.67N )-time oracle algorithm for solving Search-MFSP on all instances.23

Intriguingly, the main idea behind our algorithms is in some sense a “reverse application” of the24

gate elimination technique.25

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-26

tation → Problems, reductions and completeness27

Keywords and phrases minimum circuit size problem, minimum formula size problem, gate elimina-28

tion, search to decision reduction, self-reducibility29

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.3130

Funding During this work the author was supported by an Akamai Presdential fellowship.31

Acknowledgements I want to thank Eric Allender, Lijie Chen, Mathew Katzman, Aditya Potukuchi,32

Michael Saks, Rahul Santhanam, Ryan Williams, and Lyu Xin for many helpful discussions regarding33

this work. I would also like to thank the anonymous CCC reviewers and Dimitrios Myrisiotis for34

helping improve the exposition in this work.35

1 Introduction36

In his fascinating historical account, Trakhtenbrot [20] describes the early developments of37

the Russian cybernetics program. Beginning in the 1950s, this program was largely driven by38

a desire to understand the necessity of “perebor,” or brute-force, in solving various problems39

related to complexity minimization. What Trakhtenbrot calls “Task 1” in [20] is an analogue140

of what is now commonly referred to as the Minimum Circuit Size Problem, MCSP. In his41

1 We say analogue since Task 1 was defined in the slightly different model of switching circuits.

© Rahul Ilango;
licensed under Creative Commons License CC-BY

35th Computational Complexity Conference (CCC 2020).
Editor: Shubhangi Saraf; Article No. 31; pp. 31:1–31:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rilango@mit.edu
https://doi.org/10.4230/LIPIcs.CCC.2020.31
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Connecting Perebor Conjectures

article, Trakhtenbrot delineates two versions of “Task 1”: an “existential version,” where42

given a Boolean function f one must compute the minimum number of gates needed in a43

circuit computing f , corresponding to MCSP and a “constructive version,” where one must44

produce such an optimal circuit for f , corresponding to Search-MCSP.45

Both versions were conjectured to require “perebor,” or brute-force to solve. However,46

while it is clear that if perebor is required for MCSP then perebor must also be required for47

Search-MCSP, it is a longstanding open question (since at least 1999 [10]) to prove a reverse48

implication: that is, to show that if Search-MCSP requires brute-force to solve, then MCSP49

requires brute-force.50

Indeed, this question is closely related to another major open question surrounding51

MCSP: is MCSP NP-complete? Despite being an open problem since the discovery of NP-52

completeness2 in the 1970s and numerous fascinating papers studying MCSP, we still know53

little about the computational complexity of MCSP. The problem is known to lie in NP, but54

even formal evidence supporting or opposing the NP-completeness of MCSP is lacking. This55

is in contrast to other prominent problems that are believed to be intractable yet are not56

known to be NP-complete (such as integer factorization or the discrete logarithm3).57

However, a remarkable line of research demonstrates that a proof that MCSP is NP-58

complete would have significant ramifications. For example, Murray and Williams [14] show59

that it would imply the breakthrough complexity separation EXP 6= ZPP, and Hirahara [8]60

shows that it implies a worst-case to average case reduction for NP (if the hardness holds for61

an approximate version of MCSP).62

Kabanets and Cai observed that an NP-completeness proof for MCSP would also resolve63

the “search versus decision” question mentioned at the beginning of this paper. In particular,64

since SAT is known to have a polynomial-time search to decision reduction, MCSP being65

NP-complete would imply that MCSP would also have a polynomial-time search to decision66

reduction. Hence, the time complexity of computing MCSP and Search-MCSP would be67

equivalent up to a polynomial.68

Because of this, finding a search to decision reduction for MCSP is, in fact, a necessary69

step to showing that MCSP is NP-complete, and Kabanets and Cai left finding such a70

reduction as an open question. Indeed, it is a bit unnerving (at least to the author) that71

researchers have not yet ruled out the possibility that MCSP has a linear-time algorithm72

but solving Search-MCSP requires exponential-time! The present work was born out of a73

motivation to (at least partially) mediate this large gap.74

Alas, while we fail to improve the status of this question for MCSP, we make consider-75

able progress in connecting the search and decision complexity of the analogous Formula76

Minimization Problem, MFSP.77

1.1 Prior Work78

In light of the numerous research papers studying MCSP and its variants, we do not attempt79

to survey the full body of literature but rather concentrate on those works related to search80

to decision reductions and MFSP. We point a reader interested in a more detailed overview81

to Allender’s excellent new survey [1] and the references therein.82

2 [4] cites a personal communication from Levin that he delayed publishing his initial NP-completeness
results in hopes of showing MCSP is NP-complete.

3 Intriguingly, it is known [18, 2] that both of these problems reduce to MCSP under randomized reductions!



R. Ilango 31:3

Search to decision reductions for MCSP. There are two main prior works for search to83

decision reductions for MCSP-like problems. Both provide algorithms that find approximately84

optimal circuits that are efficient as long as MCSP has efficient algorithms. Interestingly,85

both algorithms require that MCSP actually has efficient algorithms and seemingly fail if they86

are “only” provided oracle access to MCSP (the reason is that the approximately optimal87

circuit that these algorithms output actually include a small MCSP circuit within them).88

The first prior work is a celebrated paper by Carmosino, Impagliazzo, Kabanets, and89

Kolokolova [6] that establishes connections between algorithms for MCSP-like problems and90

PAC-learning of circuits. In their paper, they show the following theorem.91

I Theorem 1 (Carmosino, Impagliazzo, Kabanets, and Kolokolova [6]). Suppose MCSP ∈ BPP.92

Then there is a randomized polynomial-time algorithm that, given the truth table of a function93

f with n-bit inputs, outputs a circuit C of size at most poly(s) such that C(x) = f(x) for all94

but a 1
poly(n) fraction of inputs x, where s is the minimum size of any circuit computing f .95

Building on [6], Hirahara [8] proved a breakthrough worst-case to average-case reduction96

for an approximation version of MCSP. In said paper, Hirahara shows the following theorem.97

98

I Theorem 2 (Hirahara [8]). Suppose for some ε > 0 that one can approximate MCSP to99

within a factor of N1−ε in randomized polynomial-time (where N is the length of the truth100

table). Then there is some ε′ > 0 such that, given a length-N truth table for computing f ,101

one can, in randomized polynomial-time, output a circuit for computing f (exactly) whose102

size is within a N1−ε′ factor of being optimal.103

Using similar ideas, Santhanam [19] independently obtained a comparable search-to-104

decision reduction (with somewhat better parameters than Theorem 2) for AveMCSP, a105

natural variant of MCSP where one asks for the smallest circuit computing a function on a106

0.9-fraction of the inputs.107

We find it interesting that “approximate” search to decision reductions for MCSP have108

been a building block in these celebrated results. It seems to suggest that further exploring109

the interplay between the search and decision versions of MCSP could be a fruitful direction.110

Hardness of MFSP. As with MCSP, we have good reason to believe that MFSP is intractable,111

since it is in some sense “hard” for cryptography computable in NC1.112

I Theorem 3 (Razborov and Rudich [17], Kabanets and Cai [10]). If MFSP ∈ P, then there113

are no pseudorandom function generators computable in NC1.114

Allender, Koucký, Ronneburger, and Roy [4] build on this connection to show that MFSP is115

hard to approximate if factoring Blum integers is intractable.116

Despite the strength of this cryptographic hardness connection, we know very little about117

the complexity of MFSP unconditionally. Indeed, part of the difficulty is that it seems118

difficult to design reductions that make use of an MFSP (or MCSP) oracle, since we do not119

understand the model of formulas (or circuits) very well. Until very recently [7], it was even120

open whether MFSP was in AC0[2]!121

One reason for focusing on MFSP is that one might expect it to be an easier problem to122

analyze than MCSP since formulas are somewhat better understood than circuits. In support123

of this intuition, we know that the formula minimization problem for DNFs and DNF ◦ XOR124

formulas are NP-complete [13, 9] and that the natural Σ2 variant of MFSP is complete for125

Σ2 [5].126

CCC 2020



31:4 Connecting Perebor Conjectures

However, counter to this intuition, there are some cases in which it has been more difficult127

to prove hardness for MFSP than for MCSP. While it is known that MCSP is hard for SZK128

under randomized reductions [3], it remains open to prove such a result for MFSP. We take129

this as further evidence of the subtleties involved in designing reductions for MFSP.130

1.2 Our Results131

In contrast to prior results, we examine the case of having to exactly solve Search-MFSP,132

that is, producing an exactly optimal (instead of approximately optimal) formula.133

We define MFSP over the model of DeMorgan formulas (formulas with AND and OR134

gates) where the size of a formula is the number of leaf nodes in its binary tree. Our main135

results are robust to changes in the model however. In particular, unless otherwise stated,136

all our results also extend to the case when gates are from the full binary basis B2 and to137

the case when the notion of size is the number of wires or the number of gates.138

Our main result is to show that one can efficiently find an optimal formula for a given139

function f using an oracle to MFSP when f has a small number of “near-optimal formulas”140

(we say what this means after our theorem statement).141

I Theorem 4 (also Theorem 34). There is a deterministic algorithm solving Search-MFSP142

using an oracle to MFSP that given a length-N truth table of a function f runs in time143

O(N6t2) where t is the number of “near-optimal” formulas computing f .144

Defining ”near-optimal” formulas. We now define what we mean by “near-optimal” for-145

mulas. Let L(f) denote the minimum size of any formula computing f . We say a formula ϕ146

is a near-optimal formula for f : {0, 1}n → {0, 1} if ϕ has size at most L(f) + n+ 1.147

Furthermore, in counting the number of near-optimal formulas, we consider formulas that148

are isomorphic as labelled binary trees to be the same formula. This avoids counting many149

trivially equivalent formulas as distinct near-optimal formulas. See Section 2.2 for a precise150

definition.151

Bounding the number of near-optimal formulas. Unfortunately, we do not understand152

the quantity t in Theorem 4 very well. However, using the nearly tight upper bounds by153

Lozhkin [11] on the maximum formula size required to compute an n-input function, we get154

that with high probability a uniformly random function on n-inputs has at most155

2O( N
log log N )

156

many near-optimal formulas where N = 2n.157

Thus, we have the following corollary.158

I Corollary 5 (also Corollary 35). There is an algorithm A for solving Search-MFSP on all159

but a o(1) fraction of instances that runs in time 2O( N
log log N ) using an oracle to MFSP.160

Corollary 5 has a nice interpretation with respect to the perebor conjecture. The queries161

algorithm A (run on a truth table input of length N) makes to its MFSP-oracle can be162

answered using a deterministic brute-force algorithm in time 2(1+o(1))N . In particular, the163

queries A makes are of length at most 2N and have complexity at most (1 + o(1)) N
log logN .164

On the other hand, the naive brute-force algorithm for Search-MFSP on an input of length165

N runs in time 2(1+o(1))N . Thus, we have the following further corollary.166



R. Ilango 31:5

I Corollary 6 (Informal). If the brute-force algorithm for Search-MFSP is essentially optimal167

on average, then the brute-force algorithm for MFSP is essentially optimal in the worst-case168

on a large subset of instances (in particular queries of length 2N with complexity at most169

(1 + o(1)) N
log logN ).170

It would be nice to improve the running-time of the algorithm in Corollary 5. The bound171

that t ≤ 2O( N
log log N ) for a random function hardly seems tight. In fact, in the setting of172

Kolmogorov complexity, one can prove that a random string of length N has only poly(N)173

many near-optimal descriptions with high probability (this is because the upper bound on174

the maximum Kolmogorov complexity of a length-N string is much tighter than the one for175

formulas). If we could prove an analogous result for formulas, then Corollary 5 would give a176

polynomial-time search to decision reduction for a random function!177

Solving Search-MFSP in the worst-case. We also give a reduction that shows that even in178

the worst-case, one can get exponential savings over the brute-force algorithm for Search-MFSP179

by using a MFSP-oracle. In light of Theorem 4, a natural approach is to split into two cases:180

If there are a lot of near-optimal formulas for f , then just guess random formulas and see181

if they compute f .182

If there are not a lot of near-optimal formulas for f , then run the algorithm in Theorem 4.183

However, this approach will only be able to output a near-optimal formula for computing184

f , and we desire to solve Search-MFSP exactly.185

We manage to overcome this issue and prove the following theorem.186

I Theorem 7 (also Theorem 42). There is a randomized algorithm for solving Search-MFSP187

using an oracle to MFSP that runs in O(2.67N ) time on instances of length N .188

By examining the queries that this algorithm makes to MFSP, we get the following189

consequence regarding the perebor conjecture.190

I Corollary 8 (Informal). If brute-force is essentially optimal for solving Search-MFSP, then191

any algorithm solving MFSP can give at most an ε power speed up over the brute-force192

algorithm where ε = 1
7 .193

A bottom-up approach for DeMorgan formulas. All of the results mentioned so far are194

proved by building an optimal formula for a function in a “top-down” way (i.e. starting from195

the output gate and working its way down to the tree leafs). It is natural to wonder if a196

“bottom-up” approach could also work.4197

Indeed, we give such a bottom-up reduction for solving Search-MFSP using an oracle to198

MFSP that is efficient on average. Unfortunately, the guarantees we prove on the running199

time on this bottom-up algorithm are weaker than the guarantees provided in Theorem 4.200

Moreover, the proof of correctness for the algorithm requires our formulas to be DeMorgan201

formulas and not, say, B2 formulas. Still, we include this result because we think the algorithm202

is interesting and because it makes use of the following lemma (which is the part where203

DeMorgan formulas are crucial) that may be of independent interest. Roughly speaking, the204

lemma shows that optimal DeMorgan formulas must not have too large depth.205

I Lemma 9 (also Lemma 54). Suppose ϕ is an optimal DeMorgan formula for a function on206

n-inputs. Then the depth of ϕ is at most O( 2n

n logn ).207

4 The idea that a bottom-up approach could also be an efficient way to solve Search-MFSP was given to
me by Ryan Williams.

CCC 2020



31:6 Connecting Perebor Conjectures

1.3 Techniques and Proof Overviews208

The top-down approach. As mentioned earlier, our reduction works in a top-down manner.209

We formalize this as follows. For any Boolean function f on n-inputs, we define the set210

OptSubcomps(f) to consist of elements of the form {g,O, h} — where g, h : {0, 1}n → {0, 1}211

and O ∈ {∧,∨} — satisfying the property that there exists an optimal formula ϕ for212

computing f such that ϕ = ϕgOϕh where ϕg and ϕh are subformulas computing g and h213

respectively.214

We can naturally define the Decomposition Problem, denoted DecompProblem as follows:215

Given: a non-trivial5 function f ,216

Output: some element of OptSubcomps(f).217

Our two main reductions work by solving the DecompProblem. It is easy to show that one218

can solve Search-MFSP efficiently by recursively calling an DecompProblem oracle to build219

an optimal formula gate-by-gate from top to bottom. (See Theorem 21 for details.)220

Thus, we now focus on trying to solve DecompProblem.221

A high level approach to solving DecompProblem. Our two top-down reductions will use222

a similar approach to solving DecompProblem. (Actually, our worst-case reduction will use223

three different approaches, but this will be one of them.)224

1. Find an efficient “test” that functions in6 an optimal subcomputation of f pass, but not225

too many other functions pass.226

2. Efficiently build the (not too long) list Candidates of functions that pass the “test.”227

3. Iterate through all pairs of functions in Candidates and each possible gate, and check if228

this constitutes an element of OptSubcomps(f).229

We first describe how we do Item 3 since it is simpler and then describe our “test” for230

Item 1. Our method for Item 2 will be different in both reductions.231

Item 3: checking membership in OptSubcomps(f). Given access to a MFSP oracle it is232

actually very easy to check whether some {g,O, h} is an element of OptSubcomps(f) or not.233

In Lemma 22 we observe that {g,O, h} ∈ OptSubcomps(f) if and only if f(x) = g(x)Oh(x)234

for all x and L(f) = L(g) + L(h).235

Item 1: the Select[f, g] test. The idea for our “test” is based on the gate elimination236

technique and the implications gate elimination has on the Select[·, ·] function defined as237

follows. Given functions f, g : {0, 1}n → {0, 1}, we define Select[f, g] : {0, 1}n×{0, 1} → {0, 1}238

by239

Select[f, g](x, z) =
{
f(x) , if z = 0
g(x) , if z = 1.

240

Our test for whether g might be part of an optimal subcomputation for f will be whether241

the quantity242

L(Select[f, g])− L(f)243

5 here by non-trivial we mean a function that cannot be computed by a formula of size one
6 In case it is not clear, we say a function g is in an optimal subcomputation for f if there exists a gate O
and function h such that {g,O, h} is an element of OptSubcomps(f).



R. Ilango 31:7

is small — in particular, no more than a parameter C. The exact value of C will depend244

on the reduction (we use this test in all three of our reductions with a different value for245

C), but to give a reader some idea, C will be an element of {1, n+ 2, 10 · 2n

n } where n is the246

number of input bits f takes.247

Now, we needed our test to have two properties:248

Property 1: (Validity) any function that is in an optimal subcomputation for f must pass249

this test, and250

Property 2: (Usefulness) this test does not accept too many other functions.251

With regards to Property 1, we show in Lemma 24 that if {g,O, h} ∈ OptSubcomps(f),252

then L(Select[f, g]) ≤ L(f) + 1 and L(Select[f, h]) ≤ L(f) + 1.253

We can give the relatively straightforward proof that L(Select[f, g]) ≤ L(f) + 1 here.254

Suppose that {g,O, h} ∈ OptSubcomps(f). To avoid some case analysis, assume that O = ∧.255

Then there exists an optimal formula ϕ = ϕg ∧ϕh such that ϕg computes g and ϕh computes256

h. Then the formula ϕg(x) ∧ (ϕh(x) ∨ z) computes Select[f, g](x, z) and has size L(f) + 1.257

For Property 2, our test must be such that the set of all functions q satisfying258

L(Select[f, q])− L(f) ≤ C259

is not too large. In Lemma 25, we show that the number of such q is bounded by260

O(t · 2C−1N logN)261

where N is the length the truth table of f and t is the number of distinct formulas (modulo262

an isomorphism between formulas defined in Section 2.2) computing f of size L(f) + C − 1 .263

(In the case that C = n+ 2, t is the number of “near-optimal” formulas discussed earlier in264

Section 1.2.)265

The intuition behind this proof is to use gate elimination. In more detail, if ϕ is a formula266

of size L(f) + C computing Select[f, g], then we can set z = 0 in ϕ and eliminate between267

one and C gates from ϕ to obtain a new formula ϕ′ of size at most L(f) + C − 1 computing268

f . Hence, we can describe ϕ (and hence g) by first describing ϕ′ (a small-ish formula for f)269

and the gates that need to be added back to ϕ′ in order to obtain ϕ.270

While this intuition is relatively straightforward, the proof itself is surprisingly tedious.271

In particular, the intuition, as stated, only gives a bound with a NC factor dependence on272

C. To achieve the stated bound with a 2C factor dependence on C requires some details.273

Moreover, this dependence on C is important since a NC dependence would make Theorem 4274

have a quasipolynomial dependence on t instead of a polynomial dependence.275

Our top-down deterministic reduction We now outline how the deterministic algorithm276

in Theorem 4 works to solve DecompProblem on an input f .277

We have already introduced the some of the ideas for the algorithm in Theorem 4. In detail,278

let BestFunctions be the set of functions that are in an optimal subcomputation of f . Let279

GoodFunctions denote the set of functions g that pass the test L(Select[f, g])− L(f) ≤ n+ 2280

(for this algorithm we set C = n+2). From our previous discussions, we know that the size of281

GoodFunctions can be bounded by a quantity related to the number of near-optimal formulas282

for f , and we know that GoodFunctions contains all the functions in BestFunctions.283

Later we explain how to construct the list GoodFunctions. Note though that once284

the list GoodFunctions is constructed, we can then iterate through all pairs of functions285

in GoodFunctions and efficiently check if they yield an optimal subcomputation, as we286

discussed previously.287

CCC 2020



31:8 Connecting Perebor Conjectures

Hence, the missing piece is to efficiently enumerate the elements of GoodFunctions. In288

fact, we do not quite need to enumerate all the elements of GoodFunctions. It suffices289

to enumerate a subset, that we call Candidates, of GoodFunctions that contains all the290

elements of BestFunctions. Informally, one can think of the Candidates subset as a set of291

“good enough functions.”292

The key observation is as follows. If q is a function on n-inputs and one defines the truth293

table Tq,i of length 2n that is equal to q on its first i bits and equals one on the remaining294

bits, then295

L(Tq,i) ≤ L(q) + n+ 1296

since one can compute Tq,i by computing q, computing whether the input is greater than i,297

and ORing these two values. The Select[·, ·] function actually respects this observation in298

a nice way. In particular, since functions g in BestFunctions satisfy the stronger property299

that L(Select[f, g]) ≤ L(f) + 1, one can show that if g ∈ BestFunctions, then300

L(Select[f, Tg,i]) ≤ L(f) + n+ 2301

for all i. In other words, if g ∈ BestFunctions, then Tg,i is in GoodFunctions for all i.302

Using this fact, we can construct a subset Candidates of GoodFunctions that contains all303

the elements of BestFunctions by bit-by-bit extending a set of prefixes PartialCandidates304

that pass our test until these prefixes become full functions. Since the prefixes of func-305

tions in BestFunctions do pass our test, we will be able to discover all the functions in306

BestFunctions.307

In more detail, we start with a set PartialCandidates that initially only contains the308

empty prefix. While PartialCandidates is non-empty, we remove a prefix γ from it and309

try to extend it by one bit. That is, for each bit b ∈ {0, 1}, we consider γb obtained by310

appending b to γ. We then see if the prefix γb “passes our test” by seeing if the truth table311

Tγb
, obtained by padding γb with ones until it has length 2n, has the property312

L(Select[f, Tγb
]) ≤ L(f) + n+ 2.313

If so, we either add γb to Candidates or back to PartialCandidates depending on whether314

the string γb is of length 2n or not. We continue until PartialCandidates is empty. The full315

details can be found in Algorithm 2.316

Our top-down randomized worst-case reduction. The algorithm in Theorem 7 uses three317

different strategies for finding an optimal subcomputation in the worst-case using an oracle318

to MFSP. We give a rough overview of each of these three parts.319

Suppose the input to the algorithm is a function f on n-inputs. First, the algorithm picks320

22N/3 random formulas of size L(f) and checks if any of these formulas compute f . If so,321

we are done. Otherwise, we know that the number of optimal formulas for f cannot be too322

large (in particular, is upper bounded by roughly 2N/3 with high probability).323

In the second part, we construct a set of candidate functions that pass a test. The324

guarantee on the number of optimal formulas from the previous step ensures that the size of325

the set326

{g : L(Select[f, g]) ≤ L(f) + 1}327

is bounded by O(2N/3), and we know that all functions that are in an optimal subcomputation328

for f are in this set. Hence, what we would like to do is enumerate the functions in this set,329



R. Ilango 31:9

however, the author does not know how to do this efficiently. Instead, we examine the subset330

of functions in this set that have not too large complexity. That is, we iterate through all331

functions with complexity at most 2
3 ·

2n

logn and build332

Candidates = {g : L(Select[f, g])− L(f) ≤ 1 and L(g) ≤ 2
3 ·

2n

logn}.333

This takes time O(22N/3). We then try to find a pair of functions in Candidates that form334

an optimal subcomputation.335

If we succeed, we are done. Otherwise, we know that there exists an optimal subcompu-336

tation {g,O, h} of f where h has complexity greater than 2
3 ·

2n

logn . This also implies that g337

has complexity at most (1 + o(1)) 2n

3 logn since L(f) = L(g) + L(h) and L(f) ≤ (1 + o(1)) 2n

logn .338

In the third part, we look for such an “unbalanced” subcomputation as follows. We339

iterate through each g in Candidates with complexity at most (1 + o(1)) 2n

3 logn and each340

O ∈ {∧,∨} and try to find a matching h by considering each h satisfying f = gOh. We argue341

that this is efficient because the the set of h satisfying the constraint that f = gOh is not342

too large (in particular, of size at most 2N/3). The reason for why this set must be small is343

that the constraint that f = gOh actually forces many of the values of h to a fixed zero/one344

value. Indeed, we argue that a large number of values must be “forced,” since if only a small345

number of values of h were “forced,” then a theorem of Pippenger [16] ensures that there346

would be a function h of too small complexity (smaller than 2
3 ·

2n

logn ) that satisfied f = gOh,347

which would contradict that fact that the second part of the algorithm failed.348

A bottom-up approach. Our final algorithm takes a different approach than our previous349

reductions, working bottom-up instead of top-down. The basic idea of the bottom-up350

approach is as follows. Begin with the set Candidates of all functions computed by formulas351

of size one. For each pair of functions g, h in Candidates and each O ∈ {∧,∨}, compute the352

function q = gOh. Next, see if gOh is an optimal formula for q using the MFSP oracle. If353

so, use some one-sided heuristic (that never gives an incorrect NO answer) to test if q is354

computed by some gate in an optimal formula for f , and add q to Candidates if it passes355

this heuristic. Repeat this process until f is added to Candidates, in which case one can356

construct an optimal formula for f by tracing back through the functions that led to it.357

The difficulty in this approach is in finding an appropriate heuristic that significantly358

prunes the search space of possible candidates. A natural contender for such a heuristic, in359

light of our previous algorithms, is testing if L(Select[f, q])− L(f) is small. However, if our360

only guarantee is that q is computed by some gate in some optimal formula ϕ for f , the best361

upper bound we manage to prove for the quantity L(Select[f, q])− L(f) is linear in the depth362

of ϕ.363

Luckily, Lemma 54 shows that the depth of ϕ cannot be too large. In particular, if ϕ364

is an optimal DeMorgan formula, then the depth of ϕ is bounded by O( 2n

n ) where n is the365

number of inputs f takes. At a high-level, the proof of this lemma works by saying that if a366

formula has very large depth, then there are many small subformulas that lie along a path in367

the binary tree of ϕ. Because there are so many of these small subformulas, there must be a368

pair that compute the same function, and this redundancy can be eliminated to produce a369

slightly smaller formula.370

Using this lemma, we show that the above bottom-up approach runs in time quadratic in371

the number of formulas for computing f that are within O( 2n

n ) of being optimal, additively.372

CCC 2020



31:10 Connecting Perebor Conjectures

1.4 Open Questions373

There are several intriguing questions raised by this work. Looking at our main theorem,374

the most obvious question is whether one can improve the bound we give on the number of375

near-optimal formulas for a random function. Our bound hardly seems correct, although its376

hard to imagine how one could do better with current techniques.377

Perhaps an indirect approach could work. Is there any operation one can apply to a378

function in order to reduce the number of optimal formulas it has? It seems plausible379

that multiple applications of the Select[·, ·] function might cut down the number of optimal380

formulas.381

Another idea would be to try to modify the heuristic “tests” in our reduction. At their382

heart, all our “tests” are powered by the gate elimination technique. It seems reasonable383

that more powerful lower bound techniques (which we indeed do have for formulas) might384

lead to better heuristics and thus more efficient search-to-decision reductions.385

There is also the question this paper began with: can one prove a non-trivial exact search386

to decision reduction for MCSP? The difficulty in adopting our approach to MCSP is that387

there are just too many ways to add a single gate to a circuit, which ruins the bounds we get388

on the number of functions passing our Select[f, g] test. Is there any way to get around this?389

Taking a step back, one can also ask what role relativization plays in the search versus390

decision question. Can one show that there is an oracle relative to which MCSP or MFSP can391

be solved in linear time, but the corresponding search problem requires exponential time?392

Finally, can one extend Lemma 9 to the case of formulas over B2 or even just prove a393

better bound for DeMorgan formulas?394

1.5 Organization395

In Section 2, we fix our notation and definitions, including our notion of formula isomorphism.396

In Section 3, we introduce the top-down approach and outline our basic strategy for solving397

Search-MFSP. Section 4 introduces the Select[·, ·] function and proves bounds on number of398

functions that pass “tests” related to the Select[·, ·] function. Section 5 gives a deterministic399

search to decision reduction for MFSP and shows it is efficient on average. Section 6 then400

gives a reduction that works in the worst case. Finally, Section 7 demonstrates a bottom-up401

approach for trying to solve Search-MFSP.402

2 Preliminaries403

For a positive integer n, we let [n] denote the subset of integers {1, . . . , n}.404

2.1 DeMorgan Formulas and Formula Size405

Our notion of formulas will be DeMorgan formulas. A DeMorgan formula ϕ on n-inputs of406

size s is given by:407

a directed rooted binary tree on the vertex set [2s − 1], specified by a subset Eϕ ⊆408

[2s− 1]× [2s− 1] of edges, and409

a gate labeling function τϕ : [2s− 1]→ {∧,∨} ∪ {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}410

where τ takes values in {∧,∨} on the internal nodes in ϕ and τ takes values in411

{0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}412

on the leaf nodes in ϕ. The edges in Eϕ point from inputs towards outputs. We note that413

our definition implicitly uses the fact that a binary tree with s leaf nodes has s− 1 internal414



R. Ilango 31:11

nodes. We also note that in our definition we do not need to specify the “left” and “right”415

child of an internal node since our gate set {∧,∨} is made up of symmetric functions. We416

will define a notion of formula isomorphism in Section 2.2.417

We will use the notation |ϕ| to denote the size of a formula ϕ (i.e. the number of leaves in418

the binary tree underlying ϕ). Given a Boolean function f , we denote the minimum formula419

size of f by420

L(f) = min{|ϕ| : ϕ is a formula computing f}.421

We say a formula ϕ is an optimal formula for a Boolean function f , if ϕ computes f and422

|ϕ| = L(f).423

We note, however, that all of our results except the ones presented in Section 7 apply424

equally well to formulas with arbitrary fan-in-two gates (i.e. the formulas over the B2 basis).425

Moreover, all our results hold for other size notions such as gates and wires.426

2.2 Optimal Formulas and Formula Isomorphism427

Since our results will depend on the number of formulas satisfying certain properties, we will428

be clear about when exactly we are saying formulas are distinct in our count.429

In particular, as we have defined formulas, one can obtain many optimal formulas from a430

single optimal formula by relabeling the nodes in underlying binary tree.431

Thus, it will be useful to define an isomorphism on formulas and only count formulas432

modulo this isomorphism. In particular, we will define two formulas to be isomorphic if they433

are isomorphic as labelled binary trees.434

In order to properly define this, we introduce some notation. If ϕ is a formula of size s435

with an underlying edge set Eϕ and a labelling function τϕ and σ : [2s− 1]→ [2s− 1] is a436

permutation, then we let ψ = σ(ϕ) be the formula of size s whose edge set Eψ is given by437

Eψ = {(σ(i), σ(j)) : (i, j) ∈ Eϕ}438

and whose labelling function τψ is given by439

τψ(σ(i)) = τϕ(i).440

We say two formulas ϕ and ϕ′ are isomorphic if |ϕ| = |ϕ′| and there is a permutation σ441

such that ϕ′ = σ(ϕ).442

From each equivalence class of isomorphic formulas, we pick a single representative that443

we call the canonical formula for that equivalence class. Note that for our purposes we do444

not need that this canonical formula to be computable, as we will just be using them in our445

analysis. Then we define CanonOptkFormulas(f) to be the set of canonical formulas that are446

optimal for computing f up to an additive k-term.447

I Definition 10 (CanonOptkFormulas(f)).

CanonOptkFormulas(f) = {ϕ : ϕ is a canonical formula and |ϕ| ≤ L(f) + k}.448

2.3 MFSP, Search-MFSP and Conventions on n and N449

We now define the Minimum Formula Size Problem denoted MFSP.450

I Definition 11 (MFSP). We define the problem MFSP as follows451

Given: a truth table of a Boolean function f and an integer size parameter s ≥ 1452

CCC 2020



31:12 Connecting Perebor Conjectures

Determine: if L(f) ≤ s.453

We define the search version of MFSP analogously.454

I Definition 12 (Search-MFSP). Search-MFSP is the problem defined as follows:455

Given: a truth table of a Boolean function f456

Output: a formula ϕ of size L(f) computing f .457

We note that MFSP ∈ NP since given a minimum-sized formula as a witness, one can458

check that this indeed computes f efficiently since the truth table of f is provided and every459

function has a formula of size at most the length of its truth table (see Theorem 14).460

When describing a function f that is an input to MFSP, one naturally wants to denote461

by n two different quantities: the number of variable inputs to a function f and the length of462

the truth table of f (which is the true input length for MFSP). We maintain the convention463

throughout this paper that n denotes the input arity of f and N = 2n denotes the length of464

the truth table of f .465

2.4 Useful Facts About Formulas466

We will make use of some basic facts about formulas in our work. First, one can easily bound467

the number of formulas of size at most s.468

I Proposition 13. The number of formulas on n-inputs of size at most s is at most469

2s logn(1+O(1/ logn))
470

We also know tight upper bounds on the maximum formula complexity of a n-input471

function.472

I Theorem 14 (Lozhkin [11] improving on Lupanov [12]). Let f : {0, 1}n → {0, 1}. Then473

L(f) ≤ 2n

logn (1 +O( 1
logn ))474

Combining the size upper bound in Theorem 14 with the bound on the number of formulas475

of size s, we get the following proposition.476

I Proposition 15 (Random functions have not too many near optimal formulas). Let n and477

k be positive integers. Let N = 2n. Assume k = O( 2n

log2 n
). Then all but a o(1)-fraction of478

n-input Boolean functions f satisfy479

|CanonOptkFormulas(f)| = 2O( N
log log N ).480

Proof. Theorem 14 say that every n-input function has a formula of size at most481

2n

logn (1 +O( 1
logn )).482

Thus, any formula for computing n-input function that is within an additive k of being483

optimal has size at most s where484

s ≤ k + 2n

logn (1 +O( 1
logn )) = 2n

logn (1 +O( 1
logn )).485

Proposition 13 implies that the number of formulas of size at most s is upper bounded by486

2s logn(1+o(1)) = 2N(1+O( 1
log log N )).487



R. Ilango 31:13

Hence, since there are 2N Boolean functions on n-inputs, it follows that in expectation a488

random function has at most489

2O( N
log log N )

490

formulas within k of being optimal. The desired claim then follows by an application of491

Markov’s inequality. J492

We note that the bound given by Proposition 15 is actually counting formulas that are493

isomorphic to each other as distinct. Unfortunately removing this redundancy does not494

improve on the bound in Proposition 15. However, the fact that our results rely on the495

number of distinct formulas up to isomorphism means that there is no obvious obstruction496

to better bounds being proved and hence to our algorithms being more efficient.497

We will also make use of the fact that integer comparison can be implemented by498

linear-sized formulas.499

I Proposition 16 (Small formulas for integer comparison). Let y ∈ {0, 1}n. Let GrtrThany :500

{0, 1}n → {0, 1} be the function given by GrtrThany(x) = 1 if and only if x > y in the usual501

lexicographic order on {0, 1}n. Then L(GrtrThany(x)) ≤ n.502

Proof. We work by induction on n. If n = 1, then clearly L(GrtrThany) = 1 (either it is 0503

if y = 1 or it equals x if y = 0).504

Now suppose n > 1. Let x1, . . . , xn and y1, . . . , yn denote the bits of x and y respectively505

where x1 and y1 denotes the highest order bit. Let x′, y′ ∈ {0, 1}n−1 be given by x′ = x2 . . . xn506

and y′ = y2 . . . yn respectively.507

If y1 = 1, then508

x > y ⇐⇒ (x1 = 1) ∧ (x′ > y′).509

if y1 = 0, then510

x > y ⇐⇒ (x1 = 1) ∨ (x′ > y′).511

In either case, we get by induction that L(GrtrThany) ≤ 1 + n− 1 = n. J512

2.5 Partial Functions and their Formula Size513

Partial functions will be a crucial building block in our reductions. A partial Boolean function514

is a function γ : {0, 1}n → {0, 1, ?} for some integer n ≥ 1. We denote partial functions using515

Greek letters such as γ and µ, although sometimes we resort to the Roman alphabet with a516

? subscript such as h?.517

In contrast, we say a Boolean function f : {0, 1} → {0, 1} is total Boolean function518

(though we allow for a partial Boolean function to indeed be total).519

We say a total Boolean function g agrees with a partial Boolean function γ if for all x520

γ(x) ∈ {0, 1} =⇒ γ(x) = g(x).521

One can naturally define the minimum formula size of a partial Boolean function γ as522

follows523

L(γ) = min{L(g) : g is a total function that agrees with γ}.524

The following theorem bounding the formula complexity of partial functions will be useful525

in our randomized worst-case reduction.526

CCC 2020



31:14 Connecting Perebor Conjectures

I Theorem 17 (Pippenger [16]). Let γ : {0, 1}n → {0, 1, ?} be a partial function. Let527

p? = |γ−1(?)|
2n . Then,528

L(γ) ≤ (1 + o(1)) · (1− p?) 2n

logn.529

3 The Top-Down Approach530

Our two main reductions both take a “top-down” approach to finding an optimal formula.531

That is, given a function f , they try to find functions g and h such that g and h are the two532

functions fed into the final output gate in an optimal formula for f and then recursing.533

This is formalized as follows.534

I Definition 18 (Optimal Subcomputations Set). Let f : {0, 1}n → {0, 1}. We define the set535

of optimal subcomputations for f , denoted OptSubcomps(f), as follows.536

Let g, h : {0, 1}n → {0, 1} be Boolean functions of the same arity as f and O ∈ {∧,∨}.537

Then {g,O, h} ∈ OptSubcomps(f) if and only if there exists an optimal formula ϕ = ϕgOϕh538

for computing f such that ϕg computes g and ϕh computes h.539

We note that in this definition we are implicitly using that the gate set {∧,∨} is symmetric540

with respect to its inputs.541

We say a function g is in an optimal subcomputation for f if g is contained in some542

element of OptSubcomps(f). In other words, g is in an optimal subcomputation for f if there543

exists an h and O such that {g,O, h} ∈ OptSubcomps(f).544

It is easy to see that OptSubcomps(f) is almost always non-empty.545

I Proposition 19. Let f : {0, 1}n → {0, 1} such that L(f) ≥ 2. Then OptSubcomps(f) is546

non-empty.547

Next, we can define the problem of finding an optimal subcomputation.548

I Definition 20 (Decomposition Problem). The Decomposition Problem, DecompProblem is549

as follows:550

Given: the truth table of a Boolean function f satisfying L(f) ≥ 2551

Output: some element of OptSubcomps(f).552

It is easy to see that DecompProblem is equivalent to Search-MFSP. DecompProblem can553

be easily solved with an oracle to Search-MFSP. The following recursive procedure shows554

the reverse direction.555

I Theorem 21 (Search-MFSP reduces to DecompProblem). There is a deterministic O(N2)-556

time algorithm for solving Search-MFSP on inputs of length N given access to an oracle that557

solve DecompProblem on instances of length N .558

The pseudocode for this reduction is written in Algorithm 1, which we recommend the559

reader look at before proceeding.560

The correctness of this algorithm is easy to see as long as one is able to bound the number561

of recursive calls the algorithm makes. To see that the number of recursive calls is bounded562

by O(N), notice that each iteration of the algorithm reveals one more gate in the optimal563

formula for f . Thus, since L(f) = O(N), we have that there are at most O(N) recursive564

calls. J565



R. Ilango 31:15

Algorithm 1 Reduction from Search-MFSP to DecompProblem
Proof. procedure FindOptFormula(f)
. Given the length-N truth table of a function f that takes n-inputs and oracle access to
DecompProblem return an optimal formula for f .

if there exists a size one formula ϕ computing f then
return ϕ.

end if
Let {g,O, h} be the output returned by the oracle DecompProblem(f).
Recursively compute the formula ϕg ← FindOptFormula(g).
Recursively compute the formula ϕh ← FindOptFormula(h).
return the formula given by ϕgOϕh.

end procedure

Our goal is now to try to solve DecompProblem (i.e. find an element of OptSubcomps(f))566

given an oracle to MFSP. Recall from the introduction that our high-level approach is as567

follows568

1. Find an efficient “test” that functions that in an optimal subcomputation of f pass but569

not too many other functions pass.570

2. Efficiently build the (not too long) list Candidates of things that pass the test.571

3. Iterate through all pairs of elements in Candidates and all possible gates, and efficiently572

check if this yields an element of OptSubcomps(f).573

Item 1 will be the subject of Section 4, Item 2 will be different in our two main reductions,574

and Item 3 is provided by the next lemma.575

I Lemma 22 (Test membership in OptSubcomps(f) efficiently with MFSP). Let f, g, h :576

{0, 1}n → {0, 1}, and let O ∈ {∧,∨}. Then577

{g,O, h} ∈ OptSubcomps(f) ⇐⇒ f = gOh and L(f) = L(g) + L(h).578

Proof. We prove the forward direction first. Suppose that {g,O, h} ∈ OptSubcomps(f).579

Then there exists an optimal formula ϕ = ϕgOϕh for computing f such that ϕg computes580

g and ϕh computes h. Clearly this implies that f = gOh. Consequently, we know that581

L(f) ≤ L(g) + L(h).582

On the other hand, since ϕ is an optimal formula for f , we have that583

L(f) = |ϕ| = |ϕg|+ |ϕh| ≥ L(g) + L(h).584

Combining the two inequalities on L(f), we get that L(f) = L(g) + L(h). This completes the585

forward direction.586

For the reverse direction, suppose that L(f) = L(g) + L(h) and f = gOh. Let ϕg and ϕh587

be optimal formulas for g and h. Then ϕ = ϕgOϕh clearly computes f and has size L(f).588

Hence {g,O, h} ∈ OptSubcomps(f). J589

4 Using gate elimination to find functions in an optimal590

subcomputation591

Our approach to solving DecompProblem involves finding a “test” that functions in an optimal592

subcomputation pass but not too many other functions pass. The test will be based off the593

following function.594

CCC 2020



31:16 Connecting Perebor Conjectures

I Definition 23 (Select[·, ·]). Let f, g : {0, 1}n → {0, 1}. We define the function Select[f, g] :595

{0, 1}n × {0, 1} → {0, 1} by596

Select[f, g](x, z) =
{
f(x) , if z = 0
g(x) , if z = 1

597

We emphasize that Select[f, g] function is only defined when f and g have the same arity.598

Now, our “test” will be to see if the quantity599

L(Select[f, g])− L(f)600

is small (how small will depend on our reduction).601

Indeed, for functions in an optimal subcomputation, this quantity is exactly one!7602

I Lemma 24. Suppose g is in an optimal subcomputation for f . Then603

L(Select[f, g]) ≤ L(f) + 1.604

Proof. Since g is in an optimal subcomputation for f , there exists an optimal formula605

ϕ = ϕg Oϕh such that ϕg computes g. If O = ∧, then606

ϕg ∧ (ϕh ∨ z)607

is a formula for Select[f, g] of size L(f) + 1. Otherwise O = ∨. Then608

ϕg ∨ (ϕh ∧ ¬z)609

is a formula for Select[f, g] of size L(f) + 1. J610

On the other hand, the number of functions that “pass this test” can be upper bounded611

in terms of |CanonOptkFormulas(f)|.612

I Lemma 25. Let k be a positive integer. Let f : {0, 1}n → {0, 1}. Assume L(f) ≥ 2. Let613

TestPassers = {g : L(Select[f, g])− L(f) ≤ k + 1}. Then614

|TestPassers| ≤ O(|CanonOptkFormulas(f)| · 2kN logN)615

where N = 2n.616

Proof. At a high-level the idea is that, given a formula ϕ of size L(f) + k + 1 for computing617

Select[f, g], one can replace the z-leaves in ϕ with 0-leaves to obtain a formula ϕ′ of size618

L(f) + k+ 1 for computing f with at least one constant leaf. One can then use a careful gate619

elimination argument to remove precisely one constant leaf from ϕ′ to obtain a formula ϕ′′620

that still computes f but has size L(f) + k. On the other hand, one can reverse this process621

by adding some constant leaf and gate to ϕ′′ and then replacing some subset of the constant622

leaves by z-leaves.623

This gives us a way to describe any g that passes the test, and thus allows us to bound624

the number of such g. In our bound, the O(|CanonOptkFormulas(f)|) factor corresponds to625

the choices for ϕ′′, the O(N logN) corresponds to the number of ways to add a new constant626

leaf and gate to ϕ′′ in order to obtain ϕ′, and the O(2k) factor comes from the number of627

7 We will only prove that it is as most one, but the reader can check that if g 6= f that a gate elimination
argument actually implies equality.



R. Ilango 31:17

ways to chose a subset of the (at most k) 0-leaves in ϕ′ into z-leaves. This completes our628

overview of the proof.629

Starting in the next paragraph, we will give the details of this proof. We caution the630

reader that this proof is rather long and tedious, especially compared to the intuition above.631

The length and detail mainly come from two sources: first, in order to show that the bound632

only cares about the number of canonical formulas (and ignores isomorphic formulas), we633

must careful define our intermediate operations in a way that it should be relatively clear634

that they respect isomorphisms; second, we must be careful in our gate elimination argument635

to remove precisely one leaf. Usually in a gate elimination argument, one would like to636

remove as many gates/leaves as possible, but in our case, since we will have to describe637

how to "re-add" each gate we eliminate, it is better to keep the number of eliminations to638

a minimum. Indeed, if we eliminated k gates, there might be roughly Nk ways to add k639

possible gates back, which would lead to a quasipolynomial bound when k = n = logN .640

Details: We prove this statement by giving two injections. For our first injection, let P641

denote the set of canonical formulas computing f with size exactly L(f) + k + 1 and with at642

least one constant-labelled leaf node in the formula.643

We will give an injection from TestPassers to P × [2k+1]. Before defining our injection,644

we will need the following claims and definitions.645

B Claim 26. Suppose ϕ computes Select[f, g] and f 6= g, then ϕ has at least one leaf node646

labelled by z or ¬z.647

Proof. If ϕ does not have any {z,¬z} labelled leaves, then the output of ϕ does not depend648

on z. But this contradicts that ϕ computes Select[f, g] since Select[f, g] does depend on the649

z input because f 6= g. C650

B Claim 27. Suppose ϕ ∈ P . Then ϕ has at most (k + 1)-many leaf nodes labelled by651

constants {0, 1}.652

Proof. Since ϕ ∈ P , we know that |ϕ| = L(f) + k + 1 and ϕ computes f . Since L(f) ≥ 2, we653

know that |ϕ| ≥ k + 3.654

If ϕ had more than (k + 1)-many constant labelled leaves, it follows by a standard gate655

elimination argument (note here it is important that |ϕ| ≥ k + 3) that there is a ϕ′ that656

computes the same function as ϕ such that657

|ϕ′| < |ϕ| − (k + 1) < L(f).658

But then ϕ would be a formula of size less than L(f) computing f which is a contradiction.659

C660

We will also need the following definitions. Given a formula ϕ that can take z-variables661

as input, we define Substitutez=0(ϕ) to be the formula ϕ′ given by replacing the z-labeled662

leaves in ϕ with 0-labels and replacing the (¬z)-labeled leaves in ϕ with 1-labels.663

We note that the Substitutez=0 operation in some sense respects formula isomorphisms.664

B Claim 28. Let ϕ be a formula of size s that takes a z-variable as input. Let σ : [2s− 1]→665

[2s− 1] be a permutation. Then666

σ ◦ Substitutez=0(ϕ) = Substitutez=0 ◦ σ(ϕ)667

Proof. The proof is essentially just applying the definition to both sides and seeing that the668

resulting edge sets and labelling functions are equal. C669

CCC 2020



31:18 Connecting Perebor Conjectures

We can also define a reverse operation to Substitutez=0 as follows. Given a formula ϕ and a670

subset S of leaf nodes in ϕ that are labelled by constants {0, 1}, define Unsubstitutez=0(ϕ′, S)671

to be the formula ϕ given by replacing 0-labeled leaves in S with z-labels leaves and by672

replacing 1-labeled leaves in S with (¬z)-labels.673

Indeed, the following claim whose proof we omit is easy to see.674

B Claim 29. For all formulas ϕ there exists a set S such that675

ϕ = Unsubstitutez=0(Substitutez=0(ϕ), S).676

Being more precise, S is a subset of the leaf nodes in Substitutez=0(ϕ) that are labelled by677

constants.678

Now we are ready to describe our injection from TestPassers→ P × [2k+1] on an input679

g ∈ TestPassers. Since g ∈ TestPassers, there is a ϕ of size L(f) + k + 1 computing680

Select[f, g]. Let ϕ′ = Substitutez=0(ϕ). Clearly ϕ′ computes f since ϕ computes Select[f, g].681

Let ϕ′ denote the canonical formula isomorphic to ϕ′. Then there exists a permutation σ682

such that683

ϕ′ = σ(ϕ′)684

= σ ◦ Substitutez=0(ϕ)685

= Substitutez=0 ◦ σ(ϕ)686
687

where the last equality comes from Claim 28. Thus, using Claim 29, we know that there688

exists a subset S of the leaf nodes of ϕ′ labelled by constants such that689

Unsubstitutez=0(ϕ′, S) = σ(ϕ).690

Moreover, the set S can be viewed as an element of [2k+1] because ϕ′ has at most k + 1691

leaf nodes labelled by constants. In particular, by construction, we have that692

|ϕ′| = |ϕ|′ = |ϕ| = L(f) + k + 1,693

and that ϕ′ computes f , so Claim 27 ensures that ϕ′ has at most k + 1 many leaf nodes694

labelled by constants.695

We define the output of our injection from TestPassers to P × [2k+1] on input g ∈696

TestPassers to be (ϕ′, S).697

We must prove that this is indeed an injection. Towards this end, we claim that698

Unsubstitutez=0(ϕ′, S) is a formula computing Select[f, g]. From this claim it is easy to see699

that this must be an injection.700

B Claim 30. Unsubstitutez=0(ϕ′, S) is a formula computing Select[f, g].701

Proof. S was chosen so that702

Unsubstitutez=0(ϕ′, S) = σ(ϕ).703

Thus, Unsubstitutez=0(ϕ′, S) computes the same function as σ(ϕ) which in turn computes704

the same function as ϕ, which computes Select[f, g] as desired. C705

From this injection, we get that706

|TestPassers| ≤ 2k+1 · |P |.707



R. Ilango 31:19

Next, we give an injection from P to the set708

CanonOptkFormulas(f)× [2L(f)]× {∧,∨} × {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}.709

To do this we will define an operation DropLeaf(ϕ, i) that takes as input a formula ϕ of710

size s ≥ 2 and a leaf node i ∈ [2s− 1] from ϕ and outputs the formula ϕ′ given as follows.711

We will first describe ϕ′ informally and then give the formal description. ϕ′ is obtained712

by deleting the leaf node i and making the output of the internal node ip that i fed into713

simply the other node that was being fed into ip.714

Now, we formally describe ϕ′. Let ip ∈ [2s− 1] be the internal node that i has an edge715

to in ϕ (we know this exists because |ϕ| ≥ 2). If needed, apply a permutation to ϕ to obtain716

an isomorphic formula where i = 2s− 1 and ip = 2s− 2. Let u ∈ [2s− 3] be the other node717

in ϕ that feeds into ip. Let ϕ′ be the formula given by the edge set718

E′ = (E ∩ ([2s− 3]× [2s− 3])) ∪ { (u, ipp) : ip feeds into ipp in ϕ}719

and the labelling function720

τ ′ = τ |[2s−3].721

For example if ϕ = (x1∨x2)∧x3 and 1 was then index of the x1 leaf, then DropLeaf(ϕ, 1) =722

x2 ∧ x3.723

We show this operation in some sense commutes with formula isomorphisms.724

B Claim 31. Let ϕ be formula of size s. Let i be the index a leaf node in ϕ, and let725

σ : [2s− 3]→ [2s− 3] be a permutation. Then there exists an integer i′ and a permutation726

σ′ : [2s− 1]→ [2s− 1] such that727

DropLeaf(σ′(ϕ), i′) = σ ◦ DropLeaf(ϕ, i)728

Proof. From our definition of DropLeaf(·, ·), we can assume without loss of generality that729

i = 2s− 1 and that the internal node that i feeds into in ϕ is ip = 2s− 2.730

Then the claim follows from letting σ be equal to σ′ on [2s − 3] and letting σ be the731

identity on {2s− 2, 2s− 1} and applying the various definitions. C732

We can also define a kind of inverse operation AddLeaf function that takes the following733

four inputs734

a formula ϕ′ on n-inputs of size s,735

a node i in the tree given by ϕ′,736

a gate O ∈ {∧,∨}, and737

a leaf label ` ∈ {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn},738

and outputs the formula ϕ of size s+1 given as follows. First, we give an informal description739

and then given a formal definition.740

Intuitively, AddLeaf is adding a new O-gate into ϕ′ between the i-node and wherever i741

was being output to (if i has an output), whose other input is a new `-labeled leaf.742

We define ϕ formally as follows. We will use the index 2s + 1 to add in our new leaf743

and the index 2s to add in our new gate. The edge set Eϕ of ϕ is given by taking Eϕ′ and744

adding in the edges (2s+ 1, 2s) and (i, 2s) and then, if there is a node ip that i feeds into in745

ϕ′, adding in an edge (2s, ip) and removing the (i, ip) edge. The node labelling τϕ of ϕ is746

given by747

τϕ(i) =


τϕ′(i) , if i ∈ [2s− 1]
O , if i = 2s
` , if i = 2s+ 1

748

CCC 2020



31:20 Connecting Perebor Conjectures

It is easy to see that AddLeaf can reverse a DropLeaf(·, ·) operation.749

B Claim 32. Let ϕ be a formula of size at least two. Let i be the index of a leaf750

node in ϕ. Then there exists an integer j, a gate O ∈ {∧,∨}, and a leaf label ` ∈751

{0, 1, x1, . . . , xn,¬x1, . . . ,¬xn} such that752

AddLeaf( DropLeaf(ϕ, i), j,O, `) = ϕ753

One of the main steps in our injection will be provided by the following claim.754

B Claim 33. Let ϕ ∈ P . Then there is an i such that ϕ′ = DropLeaf(ϕ, i) is a size (L(f) + k)755

formula for computing f .756

Proof. Let ϕ ∈ P . Then there is some internal node j in ϕ that takes as input a leaf node757

indexed by i which is labelled by a constant, that is, satisfying τϕ(i) = b ∈ {0, 1}. We will758

assume b = 0 (the proof in the b = 1 case is similar).759

Let ϕj be the the subformula computed at node j, and let Oj = τϕ(j) ∈ {∧,∨} be the760

gate label of j. We already know that the ith leaf node feeds into ϕj . Let k be the index of761

the other node feeding into j, and let ϕk be the subformula computed at node k. We split762

into cases depending on whether Oj is an ∧-gate or a ∨-gate.763

First, let us suppose Oj is a ∨-gate. Then the formula ϕj as a function is equivalent764

to the formula 0 ∨ ϕk which is equivalent as a function to ϕk. Hence it follows that765

ϕ′ = DropLeaf(ϕ, i) is an (L(f) + k)-size formula (since we removed the ith leaf) computing766

f (since ϕj and ϕk compute the same function).767

Now, suppose that it is a ∧-gate. Then the output of ϕj is always zero. Since |ϕj | ≥ 2,768

there exists some subformula ϕ2 of ϕj of size 2 (i.e. there is some node in ϕv that has two769

leaves as children and ϕ2 is the subformula computed at that node). Since ϕ2 has two leaves,770

there exists one leaf node index i′ in ϕ2 such that i′ 6= i (i.e. this leaf node is not the ith leaf771

node we were considering before).772

Then we claim that ϕ′ = DropLeaf(ϕ, i′) is an (L(f) + k)-size formula computing f . It773

is easy to see that |ϕ′| is an (L(f) + k)-size formula since we removed the i′th leaf node.774

To see that ϕ′ still computes f , note that the 0-labeled ith leaf node in ϕ still exists in775

ϕ′. If the gate node j was removed by the DropLeaf(·, ·) operation, then the output wire776

of ϕj that computed the 0 function in ϕ has been replaced by the 0-leaf i in ϕ′ which still777

computes the 0 function, so ϕ′ must still compute f . If the gate node v was not removed by778

the DropLeaf(·, ·) operation, then the output corresponding gate to v in ϕ′ is still computing779

0 (since it is an ∧-gate with a 0 input), so ϕ′ still computes f . C780

Now we can finally describe the injection from P to the set781

CanonOptkFormulas(f)× [2L(f) + 2k − 1]× {∧,∨} × {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}.782

Given an input ϕ in P , we have by Claim 33 that there exists a least i-value such that783

ϕ′ = DropLeaf(ϕ, i) is a formula computing f of size L(f) + k. Let ϕ′ be the canonical784

formula isomorphic to ϕ′. Then we have that ϕ′ ∈ CanonOptkFormulas(f) and we have that785

there are permutations σ and σ′ and an integer i′ such that786

ϕ′ = σ(ϕ′)787

= σ ◦ DropLeaf(ϕ , i)788

= DropLeaf(σ′(ϕ), i′)789
790

where the last equality comes from Claim 31.791



R. Ilango 31:21

Hence, by Claim 32, we have that there exists a gate index j ∈ [2L(f) + 2k − 1], a gate792

O ∈ {∧,∨}, and a leaf label ` ∈ {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn} such that793

AddLeaf(ϕ′, j,O, `,D) = σ′(ϕ).794

In other words, AddLeaf(ϕ′, j,O, `,D) outputs a formula isomorphic to ϕ.795

Thus, we set the output of the injection on input ϕ to be (ϕ′, j,O, `,D). The fact that796

this is an injection from P is ensured by the fact that AddLeaf(ϕ′, j,O, `,D) is isomorphic to797

ϕ and the fact that P contains only canonical formulas.798

Hence, we get that799

|P | ≤ |CanonOptkFormulas(f)| · 2(L(f) + k) · 2 · (2n+ 1)800

≤ O(|CanonOptkFormulas(f)|(N + k) logN).801
802

Combining this with upper bound on TestPassers in terms of P , we get that803

|TestPassers| ≤ O(|CanonOptkFormulas(f)| · 2kN logN)804

J805

5 A deterministic reduction that works on average806

We will now use the tools developed in Section 3 and Section 4 to give a search to decision807

reduction that is efficient on functions with few near-optimal formulas.808

I Theorem 34. There is a deterministic algorithm solving Search-MFSP on inputs of length809

N given access to an oracle that solves MFSP on instances of length 2N that runs in time810

O(|CanonOptn+1Formulas(f)|2 ·N5 log2 N) where n = logN .811

Before we prove Theorem 34, we state a corollary that follows from the bound on the812

size of CanonOptkFormulas(f) for a random function given in Proposition 15.813

I Corollary 35. There is a deterministic algorithm solving Search-MFSP on inputs of length814

N given access to an oracle that solves MFSP on instances of length at most 2N that runs815

in time 2O( N
log log N ) on all but a o(1)-fraction of instances.816

Proof of Corollary 35. The algorithm for this corollary is obtained by combining the al-817

gorithm in Theorem 34 for DecompProblem with the oracle algorithm in Theorem 21, which818

that one can solve Search-MFSP in a recursive manner given an oracle to DecompProblem.819

There is some subtlety in showing this algorithm yields the desired average-case efficiency,820

however. One would like to appeal to Proposition 15, which bounds |CanonOptn+1Formulas(f)|821

by 2O( N
log log N ) for a random function, in order to say that this gives us an algorithm for solving822

Search-MFSP that runs in time 2O( N
log log N ) on all but a o(1)-fraction of instances. However,823

the algorithm in Theorem 21 for solving Search-MFSP requires solving DecompProblem on824

functions other than the original input f .825

Luckily, looking at the code for the recursive algorithm in Theorem 21, any function g826

that we need to recursively solve DecompProblem on has that property that g is computed827

by some gate in an optimal formula for f . It follows that the |CanonOptgFormulas(n+ 1)| ≤828

|CanonOptfFormulas(n+ 1)| since one can create a near-optimal formula for f by taking the829

optimal formula for f that computes g at some gate and replacing the subformula at that830

gate with a near-optimal formula for g.831

Thus, Proposition 15 ensures that on all but a o(1)-fraction of functions f , we can832

answer all the recursive calls to DecompProblem in time 2O( N
log log N ) using the algorithm in833

Theorem 34. J834

CCC 2020



31:22 Connecting Perebor Conjectures

Proof of Theorem 34. We provide the pseudocode of our DecompProblem algorithm in835

Algorithm 2, which we recommend the reader look at before proceeding.

Algorithm 2 A deterministic search to decision reduction for MFSP whose run time depends on
the number of “near-optimal formulas”

1: procedure OptimalSubcomputation(f)
. Given the length-N truth table of a function f that takes n-inputs with L(f) ≥ 2, this
procedure returns an element {g,O, h} of OptSubcomps(f).

2:
3: Part 1: Building a Candidates list
4: Let allUnknown : {0, 1}n → {0, 1, ?} be given by allUnknown(x) =? for all x.
5: Set PartialCandidates(0) = {allUnknown}.
6: Set i = 0.
7: while i < N do
8: Set PartialCandidates(i+1) = ∅.
9: for all γ ∈ PartialCandidates(i) and for all b ∈ {0, 1} do
10: Let x? be the lexicographically first input satisfying γ(x?) =?.

11: Let γb : {0, 1}n → {0, 1, ?} be given by γb(x) =
{
b , if x = x?

γ(x) , otherwise.

12: Let gγb
be the (total) function given by gγb

(x) =
{

1 , if γb(x) =?
γb(x) , otherwise.

13: if L(Select[f, gγb
]) ≤ L(f) + n+ 2 then

14: Add γb to PartialCandidates(i+1).
15: end if
16: end for
17: Set i = i+ 1.
18: end while
19: Set Candidates = PartialCandidates(N).
20:
21: Part 2: Finding an optimal pair within Candidates
22: for all pairs g, h ∈ Candidates and for all gates O ∈ {∧,∨} do
23: if L(g) + L(h) = L(f) and f = gOh then
24: return {g,O, h} .
25: end if
26: end for
27: end procedure

836

5.1 Correctness of Algorithm 2837

In this subsection we show that Algorithm 2 has the desired input/output behavior.838

Fix some function f with n-inputs satisfying L(f) ≥ 2. Let N = 2n.839

Part 1: building Candidates. First, we will prove some loop invariants that will help us840

show that Candidates and PartialCandidates(i) contain those functions we are interested841

in and do not contain many more things.842

The following claim shows that the x? described on Line 10 always exists and that843

the ?-values of partial functions in PartialCandidates(i) always have an easily computable844



R. Ilango 31:23

structure.845

B Claim 36. Before and after each iteration of the while loop, it is true that if γ ∈846

PartialCandidates(i), then847

γ(x) =? ⇐⇒ x ≥ i (interpreting i as a binary string in {0, 1}n in the natural way),848

and consequently |γ−1({0, 1})| = i.849

Proof. Clearly the claim is satisfied before the first iteration of the while loop when i = 0850

and PartialCandidates(i) = {AllUnknown}.851

Now, we must argue inductively. Suppose 1 ≤ i ≤ N and γ′ ∈ PartialCandidates(i).852

Then, it follows that there is some γ ∈ PartialCandidates(i−1) and some b ∈ {0, 1} such853

that γ′ = γb where γb is as defined in the pseudocode. That is, γb is equal to γ except that854

the first ?-value (which occurs at x?old = i− 1 by the inductive hypothesis) is replaced by a b.855

Thus, we have856

γ′(x) =? ⇐⇒ γ(x) =? ∧ (x 6= x?old) ⇐⇒ x > x?old ⇐⇒ x ≥ i857

where the first equivalence comes from the definition of γb = γ′ and the second equivalence858

comes from the fact that x?old = i− 1. C859

Next, we show that the PartialCandidates(i) never contains “redundant” partial functions.860

861

B Claim 37. Before and after each iteration of the while loop, it is true that if γ′ and γ′′862

are distinct elements of PartialCandidates(i), then no total function agrees with both γ′863

and γ′′.864

Proof. Before the first iteration of the while loop runs, i = 0 and PartialCandidates(0) only865

contains the single partial function AllUnknown, so the claim clearly holds.866

Now we must show that the claim holds inductively. Assume 1 ≤ i ≤ N . For contradiction,867

suppose there was some total function q that agrees with distinct elements µ and µ′ from868

PartialCandidates(i). It follows that there exists some b, b′ ∈ {0, 1} and some (possibly not869

distinct) γ, γ′ ∈ PartialCandidates(i−1) such that µ = γb and µ′ = γ′b′ (using the notation870

from the pseudocode where these functions γb and γ′b′ are given by replacing the output of871

the first ?-valued input in γ or γ′ respectively with a b-value or b′-value respectively). It872

follows that q must also agree with γ and γ′.873

Either γ 6= γ′ or not. If γ 6= γ′, then q agrees with two distinct elements from874

PartialCandidates(i−1) which contradicts the inductive hypothesis.875

Now suppose that γ = γ′. Then it must be that b 6= b′ (otherwise, µ = µ′ and we assumed876

they are distinct). But then, we have then γ and γ′ have the same first ?-valued input x?, so877

b = µ(x?) = q(x?) = µ′(x?) = b′878

which contradicts that b 6= b′. C879

Moreover, PartialCandidates(i) only contains partial functions that can be completed880

to total functions that pass a certain test.881

B Claim 38. Before and after each iteration of the while loop, it is true that if γ ∈882

PartialCandidates(i) then there exists a function g on n-inputs that agrees with γ such that883

L(Select[f, g]) ≤ L(f) + n+ 2.884

CCC 2020



31:24 Connecting Perebor Conjectures

Proof. Before the first iteration of the while loop runs, i = 0 and PartialCandidates(0)885

only contains one partial function (AllUnknown). The function f clearly agrees with886

AllUnknown, and it is easy to see that L(Select[f, f ]) = L(f) ≤ L(f) + n + 1, as desired.887

Thus, the claim holds before the first iteration of the while loop.888

Moreover, the claim clearly continues holding inductively because before any γb is added889

to PartialCandidates(i), we check to see if the function gγb
satisfies890

L(Select[f, gγb
]) ≤ L(f) + n+ 2891

and gγb
agrees with γb by construction. C892

Finally, we show that PartialCandidates(i) always contains the partial functions we893

want.894

B Claim 39. Suppose some function q is in an optimal subcomputation for f . Then before895

and after each iteration of the while loop there is a γ ∈ PartialCandidates(i) such that q896

agrees with γ. Moreover, once part 1 is finished, q ∈ Candidates897

Proof. Fix some q as in the statement of the claim.898

Before the first iteration of the while loop runs, i = 0 and PartialCandidates(0) contains899

the all-? partial function AllUnknown, so q agrees with AllUnknown and the claim holds.900

Now, we must show the claim holds inductively. Assume 1 ≤ i ≤ N . Then by induction901

there exists a γ ∈ PartialCandidates(i−1) such that q agrees with γ. Let b = q(i− 1). Then902

q agrees with γb as defined in the pseudocode (replacing the first ?-value in γ with a b-value)903

since Claim 36 implies that904

γb(x) =
{
b , if x = i− 1
γ(x) , otherwise.

.905

Thus, if we could show γb ∈ PartialCandidates(i), we would be done with showing the first906

part of the claim. From the pseudocode, it is clear γb ∈ PartialCandidates(i) if907

L(Select[f, gγb
]) ≤ L(f) + n+ 2,908

where gγb
is as defined in the code (the function given by replacing the ?-values in γb with909

ones) which we now prove.910

We already noted that911

γb(x) =
{
b , if x = i− 1
γ(x) , otherwise.

.912

Thus, appealing to Claim 36, we know that γb(x) =? ⇐⇒ x > x? where x? ∈ {0, 1}n is the913

binary string equivalent to i−1 (note that 0 ≤ i−1 ≤ N−1 so this makes sense). Hence, since914

q agrees with γb, we have that gγb
(x) = q(x) ∨GrtrThanx?(x) where GrtrThanx?(x) = 1 if915

and only if x > x?.916

Thus, we have that917

Select[f, gγb
](x, z) =

{
f(x) , if z = 0
gγb

(x) , if z = 1
918

= Select[f, q](x, z) ∨ (z ∧GrtrThanx?(x))919
920



R. Ilango 31:25

Since {g,O, h} ∈ OptSubcomps(f), we know that L(Select[f, q]) = L(f) + 1 by Lemma 24,921

and Proposition 16 implies that L(GrtrThanx?) ≤ n. Hence, we have that922

L(Select[f, gγb
]) ≤ L(f) + n+ 2.923

Finally, we show that q ∈ Candidates after part 1 finishes. Clearly, it suffices to show924

that q ∈ PartialCandidates(N) after part 1 finishes. We have already shown that there is a925

γ ∈ PartialCandidates(N) such that γ agrees with q. However, Claim 36 implies that γ is a926

total function and hence it equals q, so q ∈ PartialCandidates(N). C927

Part 2: Finding a g, h pair within Candidates. First, we note that any output by Al-928

gorithm 2 must be correct.929

B Claim 40. Any value Algorithm 2 outputs must be an element of OptSubcomps(f).930

Proof. Any output {g,O, h} of Algorithm 2 must satisfy f = gOh and L(f) = L(g) + L(h)931

which implies {g,O, h} ∈ OptSubcomps(f) by Lemma 22. C932

Finally, we show that Algorithm 2 must output a value.933

B Claim 41. Algorithm 2 must output a value (on input f).934

Proof. Since L(f) ≥ 2, we have that OptSubcomps(f) is non-empty. Let {g,O, h} ∈935

OptSubcomps(f).936

Claim 39 implies that {g, h} ⊆ Candidates. On the other hand, Lemma 22 implies that937

L(f) = L(g) + L(h) and f = gOh. Thus, it is clear that part 2 will either output {g,O, h} or938

output a value before that. C939

5.2 Running Time of Algorithm 2940

Fix some function f with n-inputs satisfying L(f) ≥ 2. Let N = 2n. We break the running941

time analysis into the two pieces of the algorithm.942

Part 1. It is easy to see that the run time of part 1 can be bounded by943

O(N +
∑
i∈[N ]

N · |PartialCandidates(i)|)944

where |PartialCandidates(i)| indicates the size of PartialCandidates(i) after Algorithm 2945

is finished adding elements to it.946

Moreover, we can bound the quantity |PartialCandidates(i)| as follows. Claim 38 implies947

that every partial function in PartialCandidates(i) must be consistent with some total948

function g on n-inputs satisfying949

L(Select[f, g]) ≤ L(f) + n+ 2.950

On the other hand, Claim 37 implies that any single (total) function can agree with at most951

one partial function in PartialCandidates(i). Hence, we have that952

|PartialCandidates(i)| ≤ |{g : L(Select[f, g]) ≤ L(f) + n+ 2}|953

and Lemma 25 implies that954

|{g : L(Select[f, g]) ≤ L(f) + n+ 2}| ≤ O(|CanonOptn+1Formulas(f)| ·N2 logN).955

Thus, we have that part 1 runs in time at most O(|CanonOptn+1Formulas(f)| ·N4 logN).956

Moreover, part 1 only makes oracle calls of length at most 2N (to calculate L(Select[f, gγb
])).957

CCC 2020



31:26 Connecting Perebor Conjectures

Part 2. It is easy to see that this part runs in time O(N · |Candidates|2). Hence, since958

Candidates = PartialCandidates(N), the analysis in part 1 above implies that959

|Candidates| ≤ O(|CanonOptn+1Formulas(f)| ·N2 logN).960

Thus, part 2 runs in time at most961

O(|CanonOptn+1Formulas(f)|2 ·N5 log2 N).962

Moreover, part 2 only makes oracle calls of length N .963

In total. Putting it all together, we have that Algorithm 2 runs in time at most964

O(|CanonOptn+1Formulas(f)|2 ·N5 log2 N)965

and only makes oracle queries of length 2N . J966

6 A worst-case randomized reduction967

We now present a worst-case search to decision reduction for MFSP.968

I Theorem 42. There is a randomized algorithm solving Search-MFSP on inputs of length969

N in time O(2.67N ) given access to an oracle that solves MFSP on instances of length at970

most 2N .971

Proof. We prove this theorem by giving an oracle algorithm solving DecompProblem and972

appealing to Theorem 21. We provide the pseudocode of our algorithm in Algorithm 3, which973

we recommend the reader look at before proceeding.974

6.1 Correctness of Algorithm 3975

In this subsection, we prove that Algorithm 3 has the desired input/output behavior. In our976

analysis, we will use s and t as parameters which we will set to the optimal values (which977

are written in the pseudocode) in Section 6.2 where we do the running time analysis for978

Algorithm 3.979

Fix some function f on n-inputs with L(f) ≥ 2. We analyze the algorithm in parts.980

Part 1. Since ϕi is chosen to have L(f) leaves and the algorithm in part 1 checks if ϕi981

computes f before returning any value, the following claim is clear.982

B Claim 43. Any output by Algorithm 3 returned in part 1 must be an element of983

OptSubcomps(f).984

Moreover, we can lower bound the probability that Algorithm 3 returns a value in part 1985

as follows. Recall that CanonOpt0Formulas(f) is the set of optimal canonical formulas for f .986

We will show that part 1 succeeds if this set is large.987

B Claim 44. If t ≥ 5 · 2N(1+o(1))

|CanonOpt0Formulas(f)| , then part 1 of Algorithm 3 will return a value at988

least 99% of time.989



R. Ilango 31:27

Algorithm 3 A randomized worst-case search to decision reduction for MFSP

1: procedure WorstCaseOptimalSubcomputation(f)
. Given the length-N truth table of a function f that takes n-inputs with L(f) ≥ 2, this
procedure returns an element {g,O, h} of OptSubcomps(f).

2: Set s = 2
3 ·

2n

logn
3: Set t = 22N/3

4:
5: Part 1: Try random formulas
6: for i = 1, . . . , t do
7: Let Gi be a uniformly random binary tree with L(f)-leaves. (Section 6.2 discusses

how to sample Gi.)
8: Turn Gi into a uniformly random formula ϕi by picking uniformly random gates

from {∧,∨} and uniformly random input leaves from {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}.
9: if ϕi computes f then
10: Write ϕi = ϕi,1Oϕi,2.
11: Let g and h be the function computed by ϕi,1 and ϕi,2 respectively.
12: if L(f) = L(g) + L(h) then
13: return {g,O, h}.
14: end if
15: end if
16: end for
17:
18: Part 2: Generate a small list of candidates for g
19: Set SmallFuncs = {g : g is a Boolean function with n-inputs and L(g) ≤ s}.
20: Set Candidates = {g ∈ SmallFuncs : L(Select[f, g]) ≤ L(f) + 1}.
21:
22: Part 3: Try to find a g, h pair within Candidates
23: for each pair of functions g, h ∈ Candidates and for each gate O ∈ {∧,∨} do
24: if f = gOh and L(f) = L(g) + L(h) then
25: return {g,O, h}.
26: end if
27: end for
28:
29: Part 4: Try to find a g, h pair by looking at functions h satisfying f = gOh
30: Set SmallCandidates = {g ∈ Candidates : L(g) ≤ L(f)− s}.
31: for each function g ∈ SmallCandidates and for each O ∈ {∧,∨} do
32: if ∀x ∈ {0, 1}n ∃b ∈ {0, 1} such that g(x)Ob = f(x) then
33: Let h?,g : {0, 1}n → {0, 1, ?} be the unique partial function on n-inputs such

that ∀ h, f = gOh ⇐⇒ h agrees with h?,g.
34: for each total function h that agrees with h?,g do
35: if f = gOh and L(f) = L(g) + L(h) then
36: return {g,O, h}.
37: end if
38: end for
39: end if
40: end for
41: end procedure

CCC 2020



31:28 Connecting Perebor Conjectures

Proof. Since we are picking each L(f)-leaf formula ϕi uniformly at random, the probability990

that any fixed formula computes f is at least991

|CanonOpt0Formulas(f)|
the total number of formulas with L(f) leaves992

Combining Theorem 14 with Proposition 13 upper bounds the denominator by 2N(1+o(1)), so993

Pr[ϕi computes f ] ≥ |CanonOpt0Formulas(f)|
2N(1+o(1)) .994

Since each of these ϕi are chosen independently, we have that995

Pr[∃i ∈ [t] such that ϕi computes f ] ≥ 1− (1− |CanonOpt0Formulas(f)|
2N(1+o(1)) )t996

≥ 1− e−t·
|CanonOpt0Formulas(f)|

2N(1+o(1))997

≥ 1− e−5
998

≥ .99999
1000

Hence, with probability at least 99%, part 1 will find a ϕi computing f at which point it1001

will clearly return a value. C1002

Part 2. In part 2, Algorithm 3 constructs the Candidates set. We prove two claims about1003

this set. First, that it contains the functions we care about, and second that its size can be1004

bounded using the size of the CanonOpt0Formulas(f) set.1005

B Claim 45. Suppose g is in an optimal subcomputation for f . Then L(g) ≤ s =⇒ g ∈1006

Candidates.1007

Proof. Since L(g) ≤ s, we know that g ∈ SmallFuncs. Next, since g is in an optimal1008

subcomputation for f , we have by Lemma 24 that1009

L(Select[f, g]) ≤ L(f) + 1,1010

so g is an element of Candidates. C1011

B Claim 46.

|Candidates| = O(|CanonOpt0Formulas(f)| ·N logN)1012

Proof. By construction, we have that1013

Candidates ⊆ {g : L(Select[f, g]) = L(f) + 1}.1014

On the other hand, Lemma 25, we have that1015

|{g : L(Select[f, g]) = L(f) + 1}| ≤ O(|CanonOpt0Formulas(f)| ·N logN)1016

C1017



R. Ilango 31:29

Part 3. In Part 3, Algorithm 3 tries to find a g, h pair by looking within the Candidates1018

set. We show this works as long as there is a {g,O, h} ∈ OptSubcomps(f) where L(g) and1019

L(h) are at most s.1020

First, we note that part 3 can only return correct answers.1021

B Claim 47. Any output returned by Algorithm 3 in part 3 will be an element of1022

OptSubcomps(f).1023

Proof. In order for a {g,O, h} value to be returned in part 3 it must satisfy f = gOh and1024

L(f) = L(g) + L(h). Thus, by Lemma 22, we know {g,O, h} ∈ OptSubcomps(f). C1025

Next, we give sufficient conditions on which part 3 will return an answer.1026

B Claim 48. If there exists an element {g′,O, h′} of OptSubcomps(f) such that1027

max{L(g′), L(h′)} ≤ s,1028

then Algorithm 3 will return a value in part 3 or before.1029

Proof. Suppose there exists an element {g′,O, h′} of OptSubcomps(f) such that1030

max{L(g′), L(h′)} ≤ s,1031

and assume that this procedure has not returned a value before it reaches part 3. Then1032

by Claim 45, we have that both g′ and h′ are in Candidates. Moreover, since {g′,O, h′} ∈1033

OptSubcomps(f), we know that f = g′O′h′ and L(f) = L(g) + L(h) by Lemma 22. Hence1034

the for loop will return an output if it reaches the values g = g′, h = h′, and O = O′, or the1035

algorithm will return an output before reaching these values. C1036

Part 4. In the final part of Algorithm 3, we look for matching h functions for g candidates1037

with small complexity.1038

First, we note that any output returned by part 4 must be correct by essentially the same1039

proof as Claim 47 in part 3.1040

B Claim 49. Any output returned by Algorithm 3 in part 4 will be an element of1041

OptSubcomps(f).1042

Next, we show sufficient conditions for part 4 returning an answer.1043

B Claim 50. If s ≥ L(f)/2 and there exists a {g′,O, h′} ∈ OptSubcomps(f) such that1044

L(h′) ≥ s, then Algorithm 3 will return a value in part 4 or earlier.1045

Proof. Using Lemma 22, we have L(f) = L(g′) + L(h′). Thus, since s ≥ L(f)/2 and L(h′) ≥ s,1046

we have that1047

L(g′) = L(f)− L(h′) ≤ L(f)− s ≤ 2s− s = s.1048

Hence, by Claim 45, we have that g′ ∈ Candidates. Moreover, since L(g′) ≤ L(f) − s, it1049

follows that g′ ∈ SmallCandidates. Thus, it is clear that part 4 will return a value if its for1050

loop ever reaches g = g′,O = O′, and h = h′ (though it could return a value before that).1051

C1052

CCC 2020



31:30 Connecting Perebor Conjectures

In total. Finally, we can prove the correctness of the input/output behavior of Algorithm 3.1053

1054

B Claim 51. If s ≥ L(f)/2, then Algorithm 3 (run on input f) returns an element of1055

OptSubcomps(f).1056

Proof. Put together, Claim 43, Claim 47, and Claim 49 ensures that any output returned by1057

Algorithm 3 must be an element of OptSubcomps(f).1058

Hence, it suffices to show that Algorithm 3 will always output a value. We divide1059

into two cases. Either there exists an element {g′,O, h′} ∈ OptSubcomps(f) such that1060

max{L(g′), L(h′)} ≤ s or not.1061

If there exists such an element, then Claim 48 ensures that Algorithm 3 will output a1062

value.1063

Now suppose that for all {g′,O, h′} ∈ OptSubcomps(f) we have max{L(g′), L(h′)} ≥ s.1064

Since L(f) ≥ 2, we know OptSubcomps(f) is non-empty by Proposition 19. Hence we can1065

fix some {g′,O, h′} ∈ OptSubcomps(f) satisfying max{L(g′), L(h′)} ≥ s. Without loss of1066

generality we can assume that L(g′) ≤ L(h′). Thus, we have that L(h′) ≥ s, and by hypothesis1067

s ≥ L(f)/2, so Claim 50 ensures Algorithm 3 outputs a value. C1068

Thus Algorithm 3 is correct as long as s ≥ L(f)/2. Indeed, in the next section we will set1069

s so that s ≥ max{L(f)/2 : f takes n-inputs}.1070

6.2 Runtime of Algorithm 31071

In this subsection, we bound the runtime of Algorithm 3 and set s and t to the optimal1072

values. We analyze Algorithm 3 in its parts.1073

Part 1. The for loop in part 1 clearly runs t times, so we just need to bound the running1074

time of each iteration. Generating a uniformly random binary with L(f)-leaves can be done in1075

linear time (see [15] for a survey of various approaches). The other operations in the for loop1076

can clearly be done in time O(N + L(f)). Hence, all of part 1 runs in time O(t · (N + L(f))1077

which is O(t ·N) using the worst-case formula upper bound from Theorem 14.1078

Moreover, part 1 only makes oracle calls of length N (to calculate L(f)).1079

Part 2. Building the SmallFuncs set requires iterating through all formulas of size s1080

(which is bounded by 2(1+o(1))·s logn using Proposition 13) and then computing the truth1081

table of each of these size s formulas (which can be done in time O(Ns)). Hence, computing1082

SmallFuncs can be done in O(N · 2(1+o(1))·s logn) time. Moreover, |SmallFuncs| is clearly1083

upper bounded by the upper bound on the number of formulas of size s: 2(1+o(1))·s logn.1084

Next, building the Candidates set can be done in time O(|SmallFuncs|+N) = O(N ·1085

2(1+o(1))·s logn), and we use oracle calls of length 2N in this step (for Select[f, g]).1086

Hence, part 2 runs in time O(N · 2(1+o(1))·s logn).1087

We will make use of the following claim later, which bounds the size of the Candidates1088

set if part 1 did not return a value.1089

B Claim 52. Fix some function f . Then with 99% probability (over the algorithm’s choice1090

of random formulas) either Algorithm 3 on input f returns before reaching part two or1091

|Candidates| ≤ 2N(1+o(1))

t
.1092



R. Ilango 31:31

Proof. Let α(·) = o(1) be the function guaranteed to exists by Claim 44 such that if1093

|CanonOpt0Formulas(f)| ≥ 52N(1+α(N))

t
1094

then Algorithm 3 will return in part 1 with 99% probability. Let β(·) = o(1) be some function1095

we will specify later.1096

Suppose that Algorithm 3 reaches part two on input f and1097

|Candidates| > 2N(1+β(N))

t
.1098

Then Claim 46 implies that1099

2N(1+β(N))

t
≤ O(|CanonOpt0Formulas(f)|N logn).1100

Thus, by choosing β(·) to be large enough relative to α(·), we can conclude that1101

|CanonOpt0Formulas(f)| ≥ 52N(1+α(N))

t
,1102

so Algorithm 3 will return in part 1 with 99% probability. C1103

Part 3. It is easy to see that part 3 runs in time O(|Candidates|2 +N) and makes oracle1104

calls of length N .1105

Thus, using Claim 52, we have that with 99% probability part 3 runs in time 22N(1+o(1))

t2 .1106

Part 4. Computing SmallCandidates can be done in O(|Candidates|+N) time, and the1107

outer for loop runs at most O(|Candidates|) many times.1108

It remains to bound the running time of each iteration of the outer for loop. The if1109

condition can be checked in O(N) time. Constructing h?,g also takes O(N) time (similar to1110

the if condition, just iterate through each input x ∈ {0, 1}n and see which values of b ∈ {0, 1}1111

satisfy f(x) = g(x)Ob). Each iteration of the inner for loop takes O(N) time. Finally, the1112

inner for loop runs 2|h
−1
?,g

(?)| many times.1113

Thus, the total running time for part 4 is1114

O(|Candidates| · (N +N ·max{2|h
−1
?,g

(?)| : g ∈ SmallCandidates}))1115

time. Moreover, we can bound the quantity |h−1
?,g(?)| when g ∈ SmallCandidates as follows.1116

B Claim 53. If g ∈ SmallCandidates, then1117

|h−1
?,g(?)| ≤ (1 + o(1))(N − s logn).1118

Proof. Since any function h that agrees with h?,g satisfies gOh = f and, we have that1119

L(f) ≤ L(g) + L(h?,g).1120

On the other hand, since g ∈ SmallCandidates, L(g) ≤ L(f)− s. Combining these two1121

inequalities, we get1122

L(h?,g) ≥ s.1123

CCC 2020



31:32 Connecting Perebor Conjectures

But the upper bound on the formula complexity of partial functions from Theorem 171124

implies that1125

L(h?,g) ≤ (1 + o(1))(1−
|h−1

?,g(?)|
N

) N

logn.1126

Hence1127

s ≤ (1 + o(1))(1−
|h−1

?,g(?)|
N

) N

logn1128

so1129

|h−1
?,g(?)| ≤ N − s logn

(1 + o(1)) ≤ (1 + o(1))(N − s logn).1130

C1131

Thus, using Claim 52, we have that with 99% probability part 4 runs in1132

O(2N(1+o(1))

t
·N · 2(1+o(1))(N−s logn)) = 2(1+o(1))(2N−s logn)

t
1133

time.1134

In total. Thus, we get that with 99% probability Algorithm 3 runs in time1135

O(t ·N) +O(N · 2(1+o(1))·s logn) + 22N(1+o(1))

t2
+ 2(1+o(1))(2N−s logn)

t
.1136

Letting s = 2
3

2n

logn and t = 2 2
3N , we get that the running time is bounded by1137

2(1+o(1)) 2
3N .1138

Moreover, s will satisfy s ≥ L(f)/2 (as required for the correctness of the algorithm) for1139

all f with n-inputs when n is sufficiently large by Theorem 14.1140

J1141

7 A “bottom-up” reduction for DeMorgan Formulas1142

In this section, we provide another algorithm for solving Search-MFSP that is also efficient1143

on average, though with worse guarantees than the one given by Theorem 34. Despite its1144

worse guarantees, we present the algorithm because it uses a different “bottom-up” approach1145

that we think is interesting.1146

We begin by proving a lemma that bounds the depth of optimal DeMorgan formulas.1147

I Lemma 54 (Large optimal DeMorgan formulas have not too large depth). Let f : {0, 1}n →1148

{0, 1}. Let ϕ be an optimal DeMorgan formula for computing f . Then the depth of f is at1149

most 10
n · 2

n for sufficiently large n.1150

Proof. Let d be a parameter we set later. For contradiction, suppose that ϕ is an optimal1151

formula for computing f with depth greater than d. Clearly then L(f) > d as well. For ϕ1152

to have depth greater than d, there must be gates O1, . . . ,Od−1 ∈ {∧,∨} and subformulas1153

ϕ1, . . . , ϕd such that1154

ϕ = ϕ1 O1 ϕ2 O2 . . . Od−1 ϕd1155



R. Ilango 31:33

where we evaluate gates from left to right, so this formula with parentheses would be1156

(. . . ((ϕ1 O1 ϕ2) O2 ϕ3) . . . ) Od−1 ϕd,1157

and |ϕi| ≥ 1 for all i ∈ [d]. In other words, consider a d-length path from some subformula1158

ϕ1 to the output gate Od−1 in the formula and let ϕ2, . . . , ϕd be all the subformulas in ϕ1159

from bottom to top (viewing the output gate as the top) intersecting this path. Similarly, let1160

O1, . . . ,Od−1 be the gates in order from bottom to top along this path.1161

Then, we have that1162

L(f) = |ϕ| =
∑
i∈[d]

|ϕi|.1163

Thus, we have that1164

Ei∈[d]\{1}[|ϕi|] ≤
L(f)− 1
d− 1 .1165

Hence by Markov’s inequality, we have that there exists a subset S ⊆ [d] \ {1} of size at1166

least d−1
2 such that for all i ∈ S we have |ϕi| ≤ 2 · L(f)−1

d−1 .1167

On the other hand the number of distinct formulas on n-inputs with size at most 2 · L(f)−1
d−11168

is bounded by1169

22· L(f)−1
d−1 logn(1+o(1))

1170

according to Proposition 13. Assume that we have chosen d so that1171

|S| ≥ d− 1
2 > 2

L(f)−1
d−1 logn(1+o(1)).1172

Then, by the pigeonhole principle, there exists i < j ∈ S such that ϕi and ϕj compute the1173

same function. We can use this to get a contradiction to optimality as follows. Assume that1174

Oi−1 = Oj−1 = ∧ (the other cases are similar). Then, substituting in Oi−1 = Oj−1 = ∧ we1175

would have that the subformula of ϕ computed at Oi−1, that is1176

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 Oj−1 ϕj Oj . . . Oi−1 ϕi,1177

equals the function computed by1178

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 ∧ ϕj Oj . . . ∧ ϕi1179

However if ϕi(x) = 0, then intuitively this formula outputs 0 no matter what happens on1180

the to the “left” of ϕi in the formula. Thus, we might as well assume on the “left” that1181

ϕi(x) = ϕj(x) = 1. Thus we get that the function computed at gate Oi−1 is also computed1182

by the following simplified formula:1183

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 ∧ 1 Oj . . . ∧ ϕi.1184

which equals1185

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 Oj . . . ∧ ϕi.1186

Thus, while the original subformula of ϕ computed at gate Oi−1 given by1187

ϕ1 O1 ϕ2 O2 . . . ϕj−1 Oj−1 ϕj . . . Oi−1 ϕi1188

CCC 2020



31:34 Connecting Perebor Conjectures

had size
∑
k∈[i] |ϕk|, the new equivalent formula given by1189

ϕ1 O1 ϕ2 O2 . . . ϕj−1 Oj ϕj+1 . . . ∧ ϕi1190

has the smaller size
∑
k∈[i] |ϕk| − |ϕj | <

∑
k∈[i] |ϕk| which contradicts the optimality of ϕ1191

for f .1192

It remains to chose a value for d. We need to satisfy that1193

d− 1
2 > 22· L(f)−1

d−1 logn(1+o(1)).1194

By Theorem 14, we have that L(f) ≤ (1 + o(1)) 2n

logn . So setting d = 10
n · 2

n, we get that1195

22· L(f)−1
d−1 logn(1+o(1)) ≤ 22n(1/10+o(1)) ≤ d = 10

n
· 2n1196

when n is sufficiently large. J1197

Using this lemma, we prove a “bottom-up” search to decision reduction for Search-MFSP.1198

I Theorem 55. There is a deterministic “bottom-up” algorithm solving Search-MFSP on1199

inputs of length N given access to an oracle that solves MFSP on instances of length 2N that1200

runs in time O(N3 · |CanonOpt( 10
n ·2n)Formulas(f)|2) where f is the input truth table of length1201

N .1202

Algorithm 4 A bottom up search to decision reduction

1: procedure OptimalFormula(f)
. Given the length-N truth table of a function f that takes n-inputs, this procedure
finds an optimal formula computing f

2: Set Candidates(1) = ∅.
3: Let OptForm be a empty lookup table.
4: for each size one formula ϕ on n-inputs do
5: Let q be the function computed by ϕ.
6: Add q to Candidates(1).
7: Let OptForm(q) = ϕ.
8: end for
9: Set s = 1.
10: while s < L(f) do
11: Set Candidates(s+1) ← ∅.
12: for every pair g, h in Candidates and every gate O ∈ {∧,∨} do
13: Let q be the function computed by gOh.
14: if L(q) = L(g) + L(h) and L(Select[f, q]) ≤ L(f) + 10

n · 2
n then

15: Add q to Candidates(s+1).
16: Set OptForm(q) to the formula given by OptForm(g)OOptForm(h).
17: end if
18: end for
19: Set s = s+ 1.
20: end while
21: return OptForm(f).
22: end procedure



R. Ilango 31:35

Proof. The pseudocode for our reduction is presented in Algorithm 4.1203

Since the guarantees of this algorithm are weaker than the one presented in Theorem 34,1204

and since its proof of correctness is relatively straightforward (the intuition is given in1205

Section 1.3) modulo one important detail, we only prove this one important detail: that the1206

“test” used in Algorithm 41207

L(Select[f, q])− L(f) ≤ d ≤ 10
n
· 2n1208

is passed by any function q that is computed by some gate in an optimal formula for f . Note1209

that the bound on the total number of functions that pass this test given by Lemma 25 then1210

yields the desired efficiency guarantees of this algorithm.1211

Fix a function f on n-inputs and set N = 2n. The correctness of this algorithm follows1212

from showing that if ϕ is an optimal formula for f and q is an n-input function computed by1213

the ith gate node in ϕ, then1214

L(Select[f, q])− L(f) ≤ d1215

where d is the depth of ϕ. If there were the case, then1216

L(Select[f, q])− L(f) ≤ 10
n
· 2n1217

using the depth bound on optimal DeMorgan formulas from Lemma 54.1218

We now show that1219

L(Select[f, q])− L(f) ≤ d1220

by producing a formula ϕ′ for L(Select[f, q]) of size at most L(f) + d.1221

Before we give our formal construction of ϕ′, we give an example of what our construction1222

does that will hopefully be enough to convince the reader. To give an example,if ϕ =1223

x1∨x2∧x3 (associating from left to right) and x1 computes q, then ϕ′ = x1∨(x2∧¬z)∧(x3∨z).1224

We formally construct ϕ′ as follows. Recall we assumed that ϕ has depth d that q is the1225

function computed by the ith gate in ϕ. Then, we can write1226

ϕ = ϕiOi+1ϕi+1Oi+2 . . .Okϕk1227

(associating from left to right) where k ≤ d and ϕi, . . . , ϕk+1 are subformulas of ϕ and1228

Oi, . . . ,Ok are the gates connecting those subformulas in ϕ and ϕi computes q.1229

We can then construct ϕ′ by replacing each ϕj in ϕ for i+ 1 ≤ j ≤ k with a new formula1230

ϕ′j given by1231

ϕ′j =
{
ϕj ∧ ¬z, if Oj = ∨
ϕj ∨ z, if Oj = ∧

.1232

Then1233

ϕ′ = ϕiOi+1ϕ
′
i+1Oi+2 . . .Okϕ

′
k1234

computes Select[f, q] because these ϕ′j are chosen so that Oj will always just output its other1235

input when z = 1.1236

Hence,1237

L(Select[f, q])− L(f) ≤ d1238

J1239

CCC 2020



31:36 Connecting Perebor Conjectures

References1240

1 Eric Allender. The new complexity landscape around circuit minimization. In Language and1241

Automata Theory and Applications - 14th International Conference, LATA 2020, Milan, Italy,1242

March 4-6, 2020, Proceedings, volume 12038 of Lecture Notes in Computer Science, pages1243

3–16. Springer, 2020.1244

2 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.1245

Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006.1246

3 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Inf. Comput.,1247

256:2–8, 2017.1248

4 Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The pervasive reach1249

of resource-bounded kolmogorov complexity in computational complexity theory. Journal of1250

Computer and System Sciences, 77(1):14 – 40, 2011.1251

5 David Buchfuhrer and Christopher Umans. The complexity of boolean formula minimization.1252

J. Comput. Syst. Sci., 77(1):142–153, 2011.1253

6 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.1254

Learning algorithms from natural proofs. In Proceedings of the 31st Conference on Computa-1255

tional Complexity, 2016.1256

7 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Koloko-1257

lova, and Avishay Tal. Ac0[p] lower bounds against MCSP via the coin problem. In ICALP,1258

volume 132 of LIPICS, pages 66:1–66:15, 2019.1259

8 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In 59th1260

IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 247–258, 2018.1261

9 Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. NP-hardness of minimum1262

circuit size problem for OR-AND-MOD circuits. In 33rd Computational Complexity Conference,1263

CCC, volume 102, pages 5:1–5:31, 2018.1264

10 Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proceedings of the1265

Thirty-Second Annual ACM Symposium on Theory of Computing, STOC ’00, page 73–79,1266

2000.1267

11 S. A. Lozhkin. Tighter bounds on the complexity of control systems from some classes. Mat.1268

Voprosy Kibernetiki 6, pages 189–214 (in Russian), 1996.1269

12 Oleg B. Lupanov. Complexity of formula realization of functions of logical algebra. Problemy1270

Kibernetiki, 3:61–80, 1960.1271

13 William J. Masek. Some NP-complete set covering problems. Unpublished Manuscript, 1979.1272

14 Cody D. Murray and R. Ryan Williams. On the (non) np-hardness of computing circuit1273

complexity. Theory of Computing, 13(1):1–22, 2017.1274

15 Erkki Mäkinen. Generating random binary trees — a survey. Information Sciences, 115(1):1231275

– 136, 1999.1276

16 Nicholas Pippenger. Information theory and the complexity of boolean functions. Mathematical1277

Systems Theory, 10:129–167, 01 1977.1278

17 Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,1279

1997.1280

18 Michael Rudow. Discrete logarithm and minimum circuit size. Inf. Process. Lett., 128:1–4,1281

2017.1282

19 Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. In 11th1283

Innovations in Theoretical Computer Science Conference, ITCS, volume 151 of LIPIcs, pages1284

68:1–68:26, 2020.1285

20 B. A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches) algorithms.1286

IEEE Ann. Hist. Comput., 6(4):384–400, October 1984.1287


	Introduction
	Prior Work
	Our Results
	Techniques and Proof Overviews
	Open Questions
	Organization

	Preliminaries
	DeMorgan Formulas and Formula Size
	Optimal Formulas and Formula Isomorphism
	MFSP, Search-MFSP and Conventions on n and N
	Useful Facts About Formulas
	Partial Functions and their Formula Size

	The Top-Down Approach
	Using gate elimination to find functions in an optimal subcomputation
	A deterministic reduction that works on average
	Correctness of Algorithm
	Running Time of Algorithm

	A worst-case randomized reduction
	Correctness of Algorithm
	Runtime of Algorithm

	A ``bottom-up'' reduction for DeMorgan Formulas

