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Abstract6

Attempts to prove the intractability of the Minimum Circuit Size Problem (MCSP) date as far7

back as the 1950s and are well-motivated by connections to cryptography, learning theory, and8

average-case complexity. In this work, we make progress, on two fronts, towards showing MCSP is9

intractable under worst-case assumptions.10

While Masek showed in the late 1970s that the version of MCSP for DNF formulas is NP-hard,11

extending this result to the case of depth-3 AND/OR formulas was open. We show that determining12

the minimum size of a depth-d formula computing a given Boolean function is NP-hard under13

quasipolynomial-time randomized reductions for all constant d ≥ 2. Our approach is based on a14

method to “lift” depth-d formula lower bounds to depth-(d + 1). This method also implies the15

existence of a function with a 2Ωd(n) additive gap between its depth-d and depth-(d + 1) formula16

complexity.17

We also make progress in the case of general, unrestricted circuits. We show that the version of18

MCSP where the input is a partial function (represented by a string in {0, 1, ?}∗) is not in P under19

the Exponential Time Hypothesis (ETH).20

Intriguingly, we formulate a notion of lower bound statements being (P/poly)-recognizable that21

is closely related to Razborov and Rudich’s definition of being (P/poly)-constructive. We show that22

unless there are subexponential-sized circuits computing SAT, the lower bound statements used to23

prove the correctness of our reductions cannot be (P/poly)-recognizable.24
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1 Introduction64

1.1 Background and Motivation65

1.1.1 General Background66

The Minimum Circuit Size Problem, abbreviated MCSP, requires one to determine whether67

a given Boolean function f : {0, 1}n → {0, 1} (represented by its truth table, a binary string68

of length N = 2n) is computable by circuits of size at most a given parameter s ∈ N.69

Kabanets and Cai [22] initiated the “modern” study of MCSP and recent work has70

uncovered deep connections between MCSP and a growing number of areas including crypto-71

graphy, learning theory, pseudorandomness and average-case complexity.72

Giving an exhaustive review of these results is beyond our scope. However, we informally73

state some highlights and recommend an excellent survey by Allender [2] for a detailed74

overview.75

If MCSP is NP-hard under polynomial time many-one reductions, then EXP 6= ZPP [29].76

If MCSP with a fixed size parameter s = poly(n) does not have circuits of size Õ(N),77

then NP 6⊆ P/poly [28].78

If MCSP ∈ P, then there are no one-way functions [22, 12].79

If a certain “universality conjecture” is true, then the existence of one-way functions80

is equivalent to zero-error average-case hardness of MCSP (under a certain setting of81

parameters) [31].82

There is an equivalence between learning a circuit class C and the problem of “approxim-83

ately minimizing” C-circuits [8].84

If a certain approximation to MCSP is NP-hard, then there is a “worst-case to average-case”85

reduction for NP [15].86

Moreover, all but one of these results have been proved within the past five years!87

1.1.2 Specific Background and Motivation88

While it is easy to see that MCSP is in NP, it is a longstanding open question whether MCSP89

is NP-hard. Indeed, there is work dating back to the 1950s attempting to establish the90

intractability of MCSP (see [33] for a history of this early work), and Levin is said1 to have91

initially delayed publishing his results on the theory of NP-completeness in hopes of also92

showing MCSP is NP-complete. Nearly a half-century later, the question of whether MCSP93

is NP-complete remains wide open.94

One intuition for why it is difficult to prove hardness for MCSP is that producing a NO95

instance of MCSP corresponds to producing a function with a certain circuit complexity96

lower bound, a notoriously difficult task even when the desired lower bound is quite small.97

Kabanets and Cai formalized this intuition to show that any “natural” polynomial-time98

reduction from SAT to MCSP would imply breakthrough circuit lower bounds [22].99

We describe two potential ways researchers hope to “sidestep” having to prove strong100

lower bounds while still giving compelling evidence that MCSP is intractable. The first is101

to strengthen the assumption under which we are trying to show that MCSP is intractable.102

Roughly speaking, the Kabanets and Cai result suggests that proving MCSP 6∈ P under the103

assumption that P 6= NP likely requires breakthrough circuit lower bounds.104

1 [4] cites a personal communication from Levin regarding this, and some discussion can be found on
Levin’s website: https://www.cs.bu.edu/fac/lnd/research/hard.htm.
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However, it is not clear whether a similar barrier exists to proving that, say, the Expo-105

nential Time Hypothesis (ETH) implies that MCSP 6∈ P. In particular, we certainly know of106

functions that require circuits of size cn for small constants c, and even brute-forcing over all107

circuits of size n requires about n! time, which is superpolynomial in N = 2n. Thus, it is108

conceivable that one could prove that MCSP 6∈ P under ETH by showing that the brute-force109

algorithm for MCSP is nearly optimal when s = O(n), since this is a regime where we already110

have lower bounds. Indeed, we view this as a tantalizing possibility.111

Another approach to sidestep having to prove breakthrough circuit lower bounds is to112

consider the circuit minimization task for restricted classes of circuits C that we already have113

strong lower bounds against, like AC0. To formalize this, let C be some class of circuits, and114

let (C)-MCSP be the task of determining whether a given truth table is computed by some115

C-circuit of size at most a given parameter.116

Despite our relatively good understanding of circuit classes like AC0, progress on proving117

hardness for (C)-MCSP has been somewhat elusive. In 1979, Masek showed that (DNF)-MCSP118

is NP-hard. A series of subsequent results [9, 34, 3, 10, 23] simplified Masek’s proof and119

showed near-optimal hardness of approximation for (DNF)-MCSP. However, it was only120

recently, in 2018, that hardness was proved for a class C beyond DNFs: Hirahara, Oliveira,121

and Santhanam [16] showed that (C)-MCSP is NP-hard when C is the class of DNF ◦ XOR122

circuits (that is, DNFs that are allowed to have XOR gates at its leaves).123

Before we go on to state our results, we give a quick review of how NP-hardness is proved124

for (DNF)-MCSP and (DNF ◦ XOR)-MCSP. In particular, both results are proved using a125

two part strategy that involves an intermediate problem (C)-MCSP? which we define now.2126

Roughly speaking, (C)-MCSP? is the analogue of (C)-MCSP for partial truth tables.127

Formally, (C)-MCSP? is defined as follows128

Given: the truth table T ∈ {0, 1, ?}2n of an n-input partial function γ : {0, 1}n → {0, 1, ?}129

and a size parameter s ∈ N130

Determine: whether there is a C-circuit of size at most s that computes γ on all its131

{0, 1}-valued inputs.132

We stress that the truth table T here is of length N = 2n and the function f is not represented133

by the set of {0, 1}-valued input/output pairs {(x, f(x)) : f(x) ∈ {0, 1}}, which could be134

exponentially more concise. Indeed, it is known that the input/output pair representation135

version of MCSP? is NP-complete [11, 1]. However, this result makes use of the succinctness136

of the input representation, and the instances that the reduction produces can be solved by137

brute force in time poly(N).138

The two part strategy used to prove hardness for (DNF)-MCSP and (DNF◦XOR)-MCSP is139

then as follows: First, reduce an NP-hard problem to (C)-MCSP?. Second, reduce (C)-MCSP?140

to (C)-MCSP.141

Thus, the starting point of this work was to aim to prove hardness for (C)-MCSP? and142

(C)-MCSP for as expressive classes of circuits C as possible.143

1.2 Results and Discussion144

1.2.1 (C)-MCSP is Hard when C is Constant Depth Formulas145

Our first result shows that (C)-MCSP is NP-hard under randomized quasipolynomial time146

Turing reductions when C is the class, denoted AC0
d, of depth-d formulas with AND/OR gates147

2 Actually, Masek’s original reduction was a direct reduction from Circuit-SAT, but later improvements
used this framework.
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of unbounded fan-in.148

I Theorem 1 (also Theorem 22). Let d ≥ 2. Given oracle access to (AC0
d)-MCSP, one can149

compute SAT in randomized quasipolynomial time.150

We discuss some of the ideas behind our proof in Section 1.3. In a few sentences, our151

reduction works by induction on d. The d = 2 case is given by the previously known hardness152

of (DNF)-MCSP. For the inductive step, our main technical contribution is to prove a novel153

way to “lift” depth-d lower bounds to depth-(d+ 1) lower bounds. We use this technique to154

estimate the depth-d complexity of a function using an oracle that computes the depth-(d+1)155

complexity of functions.156

Comparison to Previous Work. As we mentioned earlier, Masek [27] proved that157

(DNF)-MCSP is NP-hard in the 1970s, and Hirahara, Oliveira, and Santhanam [16] recently158

showed that (DNF ◦ XOR)-MCSP is NP-hard.159

One way the jump from DNF and DNF ◦ XOR to AC0
3 is significant is that both DNF and160

DNF ◦ XOR circuits can be written as OR ◦ D for a circuit class D that is not functionally161

complete (i.e., not every function can be computed by a circuit in D). In the case of DNFs162

and DNF◦XOR circuits, D contains functions corresponding to subcubes and affine subspaces163

respectively. On the other hand, AC0
3 includes the class of OR ◦ CNF formulas and CNFs164

are functionally complete. This makes it more involved to prove lower bounds for AC0
3. For165

example, it is still a major open question to prove explicit, strongly exponential lower bounds166

against AC0
3. This reduced understanding is our rationale for why the depth-3 case was167

elusive. Indeed, this difference is manifest in our results as our method for “lifting” the168

existing depth-2 result requires significantly different ideas than the ones in [27] and [16],169

though their work forms our base case.170

Another related work is the innovative paper of Buchfuhrer and Umans [7], who showed171

that the Σ2P variant of (AC0
d)-MCSP is Σ2P -hard. In particular, they consider the problem172

where given an AC0
d formula ϕ and a size parameter s, one must output whether there is a173

AC0
d formula of size at most s that computes the same function as ϕ. As we will describe later174

in this section, one of the first steps in our reduction is actually the same as in Buchfuhrer175

and Umans: to show that we can restrict to the case where the final output gate is assumed176

to be OR.177

After this, however, our proof strategy diverges significantly. In a sense, this divergence178

is expected since the different input representations give the two problems a very different179

character. One consequence of this difference, as Buchfuhrer and Umans note in their paper,180

is that while the succinctness of the input representation in the Σ2P version allows one to181

get by with clever applications of “weak” lower bounds, the full truth table representation182

used in MCSP and (AC0
d)-MCSP means that proving NP-hardness through “the use of weak183

lower bounds is not even an option, under a complexity assumption.”184

Finally, perhaps the most direct prior work is by Allender, Hellerstein, McCabe, Pitassi,185

and Saks [3] who extended the cryptographic hardness results for MCSP to show cryptographic186

hardness for computing (AC0
d)-MCSP when d is sufficiently large.187

Using randomness to prove hardness for MCSP-type problems. While there is188

significant evidence that proving MCSP is NP-hard under deterministic reductions is beyond189

the reach of current techniques [22, 29], no such barriers are known for randomized reductions.190

Indeed, some recent results show that for close variants of MCSP, like an oracle variant191

[17] and a multi-output variant [19], one can prove the problem is NP-hard using randomized192

reductions.193

We view our reduction as a further demonstration of how one can use randomness in194

proving hardness for MCSP-related problems. Intriguingly, our result seems to use randomness195
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in a more subtle way than the aforementioned results. In particular, while the aforementioned196

results use randomness to sample uniformly random functions, we use randomness to sample197

functions with specific properties that uniformly random functions do not have. These198

properties are crucial to our analysis.199

Application: Large Gaps in Complexity Between Depths. A reasonable question200

is whether our method used in the reduction for “lifting” depth-d lower bounds to depth-(d+1)201

formula lower bounds can be applied to prove new lower bounds.202

Indeed, we give such an application. One can ask how far apart can the depth-d and203

depth-(d+1) formula complexity of a function be, additively. In our notation, this corresponds204

to asking how large can one make the quantity Ld(f)− Ld+1(f).205

Using existing depth hierarchy theorems for AC0, there exist explicit functions for which206

this gap is at least 2nΩ(1/d) [14].207

Using our techniques, we are able to improve the dependence on d significantly.208

I Theorem 2 (Proved in Section 9). For all d ≥ 2 there exists a function f : {0, 1}n → {0, 1}209

such that Ld(f)− Ld+1(f) ≥ 2Ωd(n).210

Our proof works by “lifting” the 2Ω(n) seperation the parity function gives in the d = 2211

case to higher depths at a low cost. We sketch the proof of the main technique used here in212

Section 1.3.2.213

We note, however, that our method comes with some drawbacks. First, the lower bound is214

existential and does not exhibit an explicit function witnessing this separation. Second, while215

there is a large additive gap Ld−1(f) and Ld(f), there is only a constant factor multiplicative216

gap between the two quantities, and lastly, (related to the previous point) it only gives a gap217

for formulas and not circuits.218

Despite these drawbacks, we find Theorem 2 to be especially interesting because it does219

not yet seem possible to prove such a result using the usual AC0 lower bound approaches.220

An intriguing question is how well this lower bound fits into the Natural Proofs framework221

of Razborov and Rudich [30]. We defer discussion about this to Section 1.4.222

1.2.2 (C)-MCSP? is Hard for General Circuits223

As we mentioned earlier, hardness for (C)-MCSP? has been an important intermediate step224

towards proving hardness for (C)-MCSP in previous results. This naturally motivates the225

search for the most expressive class C where we can show that (C)-MCSP? is hard. Perhaps226

surprisingly, we are able to show hardness even in the case of general circuits, but in order227

to do this we strengthen our assumption to the Exponential Time Hypothesis (ETH).228

To formalize our result, let MCSP? denote the the problem of (C)-MCSP? where C is the229

class of general circuits: that is circuits with fan-in two AND and OR gates as well as NOT230

gates where the size of a circuit is the number of AND and OR gates in the circuit. We231

establish that MCSP? is not in P assuming ETH.232

I Theorem 3 (also Theorem 11). Assume ETH holds. Then there is no deterministic233

algorithm for solving MCSP? that runs in time No(log logN). Moreover, given the truth table234

of a partial function T ∈ {0, 1, ?}N , there is no deterministic algorithm for deciding whether235

T can be computed by a monotone read once formula that runs in time No(log logN).236

We prove this theorem by giving a reduction from a problem with known ETH hardness237

(2n×2n Bipartite Permutation Independent Set) to MCSP?. Lokshtanov, Marx, and Saurabh238

[25] showed that, under ETH, 2n×2n Bipartite Permutation Independent Set cannot be solved239

in deterministic time 2o(n logn). We discuss the basic idea behind our proof in Section 1.3.240
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Input Representation and Closeness of MCSP? to MCSP. We again stress that the241

partial function input to MCSP? is represented as a string in {0, 1, ?}2n and not as a (possibly242

exponentially more concise) list of input/output pairs where the partial function is defined.243

To highlight this difference, we note that while the input/output pair representation variant244

of MCSP? is already known to be NP-complete under deterministic many-one reductions245

[11, 1], if the same were known for MCSP?, then the breakthrough separation EXP 6= ZPP246

would follow from an argument by Murray and Williams [29].247

Implications for Read Once Formulas. Theorem 3 establishes that under ETH248

the brute force algorithm for detecting whether a partial function can be computed by a249

monotone read once formula is nearly optimal, since there are roughly N log logN such read250

once formulas. This is in sharp contrast to the case when one is given a total function f as251

input: in that case, one can decide if f is computable by a monotone read once formula in252

time poly(n) given oracle access to the truth table of the function [5], an exponential gap!253

Algorithmic Implications. Currently, the best known algorithm for solving MFSP on254

a truth table of length N and with a size parameter s is the brute force algorithm that runs255

in time Ns2O(s logn). There have been some efforts [36] hoping to reduce the exponential256

dependence from s logn to s. Theorem 3 suggests that the exponential s logn dependence257

may be necessary when the input is a partial truth table, at least in the regime where258

s = O(n).259

Open Question: Extension to MCSP? A natural question is whether this result260

can be extended to show that MCSP 6∈ P under ETH. We already know reductions from261

(C)-MCSP? to (C)-MCSP for the classes DNF and DNF ◦XOR, so perhaps one can also reduce262

MCSP? to MCSP.3263

In our opinion, however, the most promising approach is to skip MCSP? entirely and264

extend our techniques to apply to MCSP directly. In particular, our MCSP? hardness result265

can be viewed in a more general framework that we describe now. Let f : {0, 1}n → {0, 1}266

be a function whose optimal circuits have size exactly s. Let F : {0, 1}n × {0, 1}k → {0, 1}.267

We say that F is a simple extension of f if268

F depends on all its inputs,269

F can be computed by a circuit of size s+ k, and270

there exists a y0 ∈ {0, 1}k such that for all x ∈ {0, 1}n we have F (x, y0) = f(x).271

Essentially, the definition of a simple extension of an optimal f -circuit is made so that we272

can apply a “reverse gate elimination” argument (we describe what this is in Section 1.3)273

to argue that any optimal circuit for F is obtained by taking an optimal circuit for f and274

“uneliminating” (i.e. adding) gates “in a specific way.”275

From our definition, it is easy to see that one can compute whether F is a simple extension276

of f using an oracle to MCSP. Thus, if one can show hardness for deciding whether F is a277

simple extension of f , then one has established hardness for MCSP.278

Indeed, our approach to proving hardness for MCSP? essentially shows that deciding279

whether a partial function F is a simple extension of ORn (the OR function on n bits) cannot280

be solved in time No(log logN) under ETH.281

We believe that one might be able to prove a similar hardness result for MCSP by letting282

f be a function other than ORn. Indeed the difficultly with using f = ORn to try to prove283

hardness for MCSP is that the set of optimal ORn circuits is so well structured that it is easy284

3 Subsequent to this work, the author was able to prove that (Formula)-MCSP is not in P under ETH by
giving a reduction from (Formula)-MCSP? to (Formula)-MCSP.
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to decide whether any total function F is a simple extension of f = ORn. This difficultly is285

manifest in any function f whose optimal circuits are read once formulas.286

Thus, the missing component in extending our results to MCSP is finding some function287

f whose optimal circuits we can characterize but are also sufficiently complex. Since we288

can make do with linear-sized optimal circuits, we see no immediate reason why existing289

techniques cannot yield such an f .290

1.3 Proof Ideas291

1.3.1 Hardness for (AC0
d)-MCSP.292

Before we begin, we introduce some notation. The size of a formula ϕ is denoted by |ϕ| and293

equals the number of leaves in the binary tree underlying ϕ. Given a Boolean function f ,294

Ld(f) denotes the size of the smallest depth-d formula computing f . LOR
d (f) and LAND

d (f)295

denote the size of the smallest depth-d formula whose output/top gate is an OR or AND gate296

respectively.297

Three Step Overview. At a high-level, our strategy for proving the NP-hardness of298

computing Ld(·) breaks into three parts.299

1. Show that for all d ≥ 2 one can reduce computing LOR
d to Ld, so it suffices to prove NP300

hardness for LOR
d .301

2. Show that when d = 2 it is NP-hard to compute LOR
d within any constant factor (this302

part was already known).303

3. Show that when d ≥ 3 one can compute a small approximation of LOR
d−1 using an oracle304

that computes a small approximation of LOR
d . Conclude that Ld is NP-hard to compute305

for all d ≥ 2.306

We now describe each of these steps in order.307

Step 1: Restrict to a Top OR Gate. The idea in Step (1) to restrict the top gate of308

the formula is also used in the aforementioned result of Buchfuhrer and Umans [7]. However,309

the method they use to restrict the top gate can blow up the size of the corresponding truth310

table exponentially. We modify their approach using existing depth hierarchy theorems for311

AC0 (the statement of the depth-hierarchy theorem in [13] is easiest for us to use) in order to312

give a quasipolynomial time reduction from computing LOR
d to Ld.313

We note that this is the only part of our proof that makes use of classical “switching314

lemma style” lower bound techniques. This dependence, however, is not strictly necessarily:315

we also show that one can avoid “switching lemma” type techniques in the proof altogether316

at the cost of losing some hardness of approximation.317

At a high-level, the key idea for how to prove step (1) is to take the direct sum of f with318

a function g that is much easier to compute with a top OR gate than a top AND gate in319

order to force any optimal depth-d formula for computing the direct sum to use a top OR320

gate.321

Step 2: d = 2 Base Case. In step (2), we use the NP-hardness of computing LOR
d to322

any constant factor when d = 2 as the base case of our inductive approach. This result323

(actually a stronger version) was first proved in the work of Feldman [10] and Allender et al.324

[3] and was subsequently improved by Khot and Saket [23]. There is a technicality in that325

these results use a slightly different size measure for DNFs: the number of terms in a DNF326

rather than the number of leaves. However, we show that there is an easy reduction between327

computing the two size measures for DNFs.328

Step 3: d ≥ 3 Inductive Argument. Finally, Step (3)’s connection between computing329

LOR
d and LOR

d−1 is the heart of our reduction and required several new ideas. Since the goal330
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in this step is to be able to compute LOR
d−1(f) for some function f using an oracle to LOR

d , a331

natural approach is to construct some function F such that any optimal OR ◦AC0
d−1 formula332

for F must “contain” an optimal OR ◦ AC0
d−2 formula for f “within” it. Our original hope333

was to be able to force such a situation using a “switching lemma style” argument, but we334

were not able to make this approach to work.335

Instead, we take an approach based on direct sums. Our proof of step (3) begins with an336

observation that, while trivial, was an important perspective switch (at least for the author):337

DeMorgan’s laws imply that LOR
d−1(f) = LAND

d−1 (¬f) for all functions f . Thus, if we want to338

compute LOR
d−1(f) given an oracle to Ld for any function f , it suffices to show how to compute339

LAND
d−1 (f) using an oracle to Ld for any function f .340

The natural approach mentioned above then becomes to try constructing a function F341

such that any optimal OR ◦ AC0
d−1 formula for F contains an optimal AND ◦ AC0

d−2 formula342

for f within it. A reasonable candidate for F is the direct sum of f with another function g,343

that is F (x, y) = f(x) ∧ g(y).344

One can gain some intuition for the complexity of F by examining the following family of345

formulas for computing f(x)∧g(y). Suppose ϕ and ψ are OR◦AC0
d−1 formulas for computing346

f and g respectively. Then we can expand ϕ =
∨
i∈[tf ] ϕi where each ϕi is an AND ◦ AC0

d−2347

formula and tf is the top fan-in of ϕ. Similarly, write ψ =
∨
j∈[tg ] ψj .348

Observe that, by distributivity, we can then compute F as349 ∨
i∈[tf ],j∈[tg ]

(ϕi(x) ∧ ψj(y)).350

This yields a formula for computing f of size351

|ϕ| · tg + |ψ| · tf .352

Hence, if computing g is significantly more expensive than computing f and g has an353

optimal formula with top fan-in tg = 1, then the optimal formula for F within this family354

is plausibly obtained by picking a formula ϕ for computing f that has top fan-in tf = 1355

(i.e. ϕ is an AND ◦ AC0
d−2 formula computing f). In this case, we would have our desired356

property that optimal formulas for F contain an optimal AND ◦ AC0
d−2 formula for f within357

them. Our main lower bound is a partial formalization of this intuition. We state this result358

informally here and point the reader to the full version for a formal statement.359

I Theorem 4 (Informal version of Theorem 5). Let f be a boolean function, and let g be a360

function that is “expensive” to compute compared to f . Then361

LAND
d−1 (f) + LOR

d (g) ≤ LOR
d (f(x) ∧ g(y))362

≤ LAND
d−1 (f) + LAND

d−1 (g).363
364

The proof of Theorem 4 is, in our opinion, our most interesting proof. We state the365

theorem formally and give a sketch of the proof in Section 1.3.2. Roughly speaking, however,366

g is “expensive” compared to f if computing even a weak one-sided approximation of g using367

non-deterministic formulas is more expensive than computing f exactly with AND ◦ AC0
d−2368

formulas. The full proof of Theorem 4 can be found in Section 4.369

Theorem 4 implies that, when g is chosen carefully, the quantity370

LOR
d (f(x) ∧ g(y))− LOR

d (g)371

gives an additive approximation to LAND
d−1 (f) with error bounded by LAND

d−1 (g)− LOR
d (g). This372

is how our reduction estimates LAND
d−1 (f).373



10 Versions of MCSP are Hard

While we do not describe the details of our reduction here, there are three important374

details (phrased as questions) we would like to highlight about getting the reduction to work:375

How do we get our hands on such g? We need g to satisfy two properties: be expensive376

relative to f and have the quantity LAND
d−1 (g) − LOR

d (g) be small. Uniformly random377

functions (with the right parameters) are expensive, but when d = 3, the quantity378

LAND
d−1 (g) − LOR

d (g) is not small for such uniformly random g. We get around this by379

selecting our g to be drawn randomly from a set of functions that roughly corresponds380

to the subfunctions computed by CNF subformulas in Lupanov’s construction of near381

optimal depth-3 formulas for random functions [26]. In this way, we get functions that382

are essentially optimally computed by CNFs but also have properties expected of random383

functions.384

Without knowing the complexity of f , how can we know that g is expensive compared to f?385

In our reduction we have to balance how expensive g is with how large LAND
d−1 (g)− LOR

d (g)386

is, since as g gets more expensive LAND
d−1 (g)− LOR

d (g) also gets larger. Thus, in some sense387

we need to know the complexity of f in order to ensure the approximation error we get388

is small. The idea we use is to successively iterate through all the possibilities for the389

complexity of f from high to low, and only output an estimate for f the first time the390

estimate significantly exceeds the error bound LAND
d−1 (g)− LOR

d (g).391

How does the approximation error propagate as we go to higher and higher depths?392

Because our method for computing LAND
d−1 (f) involves some additive error, we must be393

careful that at each depth we prove enough hardness of approximation in order to imply394

hardness for the next depth. Indeed, we show that for each d ≥ 3 there is an α > 0 such395

that it is NP-hard to approximate LOR
d to within a factor of (1 + α).396

1.3.2 Proof Sketch: Main Constant Depth Formula Lower Bound397

In this subsection we sketch the proof of Theorem 4, which we previously stated informally.398

The full proof of Theorem 4 can be found in Section 4.399

Before giving the formal statement, we introduce some notation. A non-deterministic400

formula ϕ with n-inputs and m non-deterministic inputs is just a (standard) formula ψ with401

n+m-inputs with its last m inputs designated as “non-deterministic” inputs. ϕ evaluated402

at an input x ∈ {0, 1}n equals
∨
y∈{0,1}m ψ(x, y). The size of ϕ is the same as the size of403

ψ: the number of leaves in the underlying binary tree. We use the notation LND(f) to404

denote the minimum size of any non-deterministic formula with n (regular) inputs and n non-405

deterministic inputs for computing f . In this paper we will only consider non-deterministic406

formulas that have the same number of regular and non-deterministic inputs.407

If 0 ≤ ε ≤ 1, we say a function g : {0, 1}n → {0, 1} is an ε one-sided approximation of408

f : {0, 1}n → {0, 1} if g−1(1) ⊆ f−1(1) and |g−1(1)| ≥ ε|f−1(1)|. We let LND,ε(f) denote409

minimum of LND(g) among all g that are ε one-sided approximations of f .410

We now give the formal statement of Theorem 4. The proof of this theorem can be found411

in Section 4.412

I Theorem 5. Let d ≥ 3. Let γ = 1
104 . Let f : {0, 1}n → {0, 1} be a non-constant function,413

and let g : {0, 1}m → {0, 1} be a non-constant function with m ≥ n that satisfies414

min{2 · LND,.73(g), LND(g) + LND,γ(g)} ≥ LOR
d (g) + LAND

d−1 (f).415

Then416

LOR
d (f(x) ∧ g(y)) ≥ LOR

d (g) + LAND
d−1 (f).417
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Our approach is a proof by contradiction. Suppose the hypotheses of the theorem418

hold and that there is an OR ◦ AC0
d−1 formula ϕ for computing f(x) ∧ g(y) with less than419

LOR
d (g) + LAND

d−1 (f) leaves.420

We begin by writing ϕ =
∨
i∈[t] ϕi where each ϕi is an AND ◦ AC0

d−2 formula. The key421

idea of our proof is to view each ϕi as a non-deterministic formula with y being its regular422

input and x being its non-deterministic input. In particular, for each i ∈ [t] let Si ⊆ {0, 1}m423

be the subset of inputs accepted non-deterministically by ϕi. In other words424

Si = {y : ∃x such that ϕi(x, y) = 1}.425

Since ϕ =
∨
i∈[t] ϕi computes f(x) ∧ g(y) and f is not constant, it follows that the426

union of the Si sets is precisely g−1(1). However using the assumption that ϕ has less than427

LOR
d (g) + LAND

d−1 (f) leaves, we show something stronger must occur: the sets S1, . . . , St must428

cover g−1(1) redundantly. Formally, we mean that for each element y1 ∈ g−1(1), there exists429

some i 6= j such that y1 ∈ Si and y1 ∈ Sj . Intuitively this represents a redundancy that we430

will exploit to contradict our assumptions.431

Before we continue, we try to give some intuition for why the sets S1, . . . , St must form a432

redundant cover of g−1(1). Suppose that there was some y1 ∈ g−1(1) such that y1 ∈ S1 but433

y1 6∈ S2 ∪ · · · ∪ St. By the definition of the sets Si this implies that ϕi(x, y1) = 0 for all x434

and all i ≥ 2. Since ϕ computes f(x) ∧ g(y) and g(y1) = 1 this means that435

f(x) = f(x) ∧ g(y1) = ϕ(x, y1) =
∨
i∈[t]

ϕi(x, y1) = ϕ1(x, y1)436

so we can conclude that ϕ1 can be used to compute f (by setting y = y1). This implies that437

ϕ1 has at least LAND
d−1 (f) many x-leaves since ϕ1 is an AND ◦AC0

d−2 formula. This means that438

ϕ also has at least LAND
d−1 (f) many x-leaves. On the other hand, ϕ must have LOR

d (g) many439

y-leaves because we can make ϕ compute g by setting x to a YES instance of f . Hence, we440

can conclude ϕ has at least LAND
d−1 (f) + LOR

d (g) many leaves which is a contradiction. This441

completes the intuition for why S1, . . . , St form a redundant cover of g−1(1).442

We ultimately exploit this redundancy in order to produce a non-deterministic .73443

one-sided approximation to g whose complexity is too small. The idea is as follows. Con-444

sider partitioning [t] into two subsets L and R uniformly at random, and consider the445

non-deterministic formulas ψL =
∨
i∈L ϕi and ψR =

∨
i∈R ϕi where we view the x-input446

non-deterministically and y as the true input. Because ϕ computes f(x) ∧ g(y), we can447

conclude that ψL and ψR each compute one-sided non-deterministic approximations for g.448

Moreover, the redundancy of the cover implies that in expectation they form a .75 one-sided449

approximation of g. This is because each element of g−1(1) is contained in at least two sets450

in the list S1, . . . , St, so ψL and ψR each get at least “two chances” to get a subformula ϕi451

that non-deterministically accepts any given YES instance of g.452

Now we would like to conclude that ψL and ψR are both .75 one-sided approximations453

of g and hence yield a contradiction because |ψL| + |ψR| = |ϕ| (because L and R are a454

partition) and |ϕ| ≤ LAND
d−1 (f)+LOR

d (g) and we assumed that 2 ·LND,.73(g) ≥ LAND
d−1 (f)+LOR

d (g).455

However, we cannot conclude this since we only get that ψL and ψR are each .75 one-sided456

approximations in expectation. It could be the case that each time ψL is a .75 one-sided457

approximation that ψR is not and vice versa.458

We get around this by proving that the random variables |ψ−1
L (1)| and |ψ−1

R (1)| concentrate459

around their expectation. We argue this concentration must occur as a consequence of the460

fact that S1, . . . , St redundantly covers g−1(1). In particular, we use redundancy to show461

that each set Si has small cardinality. Consequently, the smallness of the Si sets can be used462
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to bound the variance of the random variables |ψ−1
L (1)| and |ψ−1

R (1)|, which in turn implies463

by the second moment method that there is a choice of L and R such that ψL and ψR both464

form non-deterministic .73 one-sided approximations for g, which we use to show that ψL465

and ψR witness a contradiction to the assumption that 2 · LND,.73(g) ≥ LAND
d−1 (f) + LOR

d (g).466

We finish our sketch by giving the intuition for why the each of the sets S1, . . . , St must467

have small cardinality. Fix some j ∈ [t]. The redundancy of the cover implies that the468

union of all the Si sets excluding Sj still covers g−1(1). This means that
∨
i∈[t]\{j} ϕi is a469

non-deterministic formula for g. On the other hand, we know that ϕj is a |Sj |
|g−1(1)| one-sided470

approximation of g. Thus, because we assumed that |ϕ| < LAND
d−1 (f)+LOR

d (g) and a hypothesis471

of the theorem is that LND(g) + LND,γ(g) ≥ LAND
d−1 (f) + LOR

d (g), we can conclude that it472

must be the case that |Sj | ≤ γ|g−1(1)|. The reasoning is that otherwise we would get that473 ∨
i∈[t]\{j} ϕi computes g non-deterministically and ϕj computes a γ one-sided approximation474

non-deterministically and that combined they have size at most |ϕ| < LAND
d−1 (f) + LOR

d (g).475

1.3.3 Hardness for MCSP?
476

The heart of our hardness proof for MCSP? is the trivial lower bound for computing ORn477

(the OR function on n bits). One can easily characterize what the optimal circuits for ORn478

look like: all optimal circuits for ORn are given by taking a rooted binary tree with exactly479

n-leaves, labelling the internal nodes by fan-in two OR gates, and labelling each leaf node480

with an input variable in the set {x1, . . . , xn} bijectively. This last part is crucial for us, since481

it implies there are at least n! many optimal circuits for computing ORn. It also suggests482

that one might be able to associate optimal circuits for ORn with permutations.483

Indeed this is the approach we take. Our starting point is the 2n×2n Bipartite Permutation484

Independent Set problem defined by Lokshtanov, Marx, and Saurabh [25], who showed that,485

under ETH, one cannot solve 2n× 2n Bipartite Permutation Independent Set much faster486

than brute forcing over all n! permutations, specifically not as fast as 2o(n logn). For our487

high-level description, all the reader needs to know about 2n× 2n Bipartite Permutation488

Independent Set is that it489

asks whether there is a permutation π : [2n]→ [2n] satisfying certain properties, and490

it cannot be solved in time 2o(n logn) under ETH.491

Our reduction works by showing that given some instance I of 2n×2n Bipartite Permuta-492

tion Independent Set, one can construct a partial function γ : {0, 1}2n×{0, 1}2n×{0, 1}2n →493

{0, 1} such that494

there exists a permutation π satisfying I495

⇐⇒ ∃π so
∨
i∈[2n]

(zi ∧ (yi ∨ xπ(i))) computes γ(x, y, z)496

⇐⇒ a monotone read once formula computes γ497

⇐⇒ MCSP?(γ, 6n− 1) = 1.498
499

We note that all the lower bound techniques used in our proof of correctness are classical500

and can, for example, be found in Wegner’s text on Boolean functions [35]. However, we do501

highlight the specific way we use the gate elimination technique, since it will be relevant to502

our discussion in Section 1.4 regrading the Natural Proofs framework.503

“Reverse” Gate Elimination. One usually uses gate elimination to say that if some504

circuit C computes some function f , then one can obtain a smaller circuit C ′ for computing505
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a restriction f ′ = f |σ of f by applying various simplifications to C that eliminate gates in f .506

Reverse gate elimination is the same technique but with a “reverse perspective.”507

Suppose C is a circuit of size s for computing f and f ′ = f |σ is some restriction of f .508

Assume that gate elimination implies that one can eliminate k gates from C to obtain a509

circuit C ′ of size s− k for f ′. Then, equivalently, we have that the circuit C can be obtained510

by taking C ′ and “un-eliminating” (i.e. adding) gates to C ′ in a specific manner that is dual511

to the way gates are eliminated in gate elimination. Thus, if one knows what the circuits for512

f ′ of size s− k look like (as is the case with circuits for ORn of size n− 1), one can constrain513

what circuits of size s for computing f look like.514

We use this technique implicitly to argue that any circuit for computing γ has an optimal515

ORn circuit “within it,” which we can associate with a permutation.516

We note that the “reverse gate elimination” technique was also used in [18] to show a517

non-trivial search-to-decision reduction for (Formula)-MCSP. In fact, functions with many518

optimal formulas, like the ORn function, precisely correspond to the hard instances for the519

algorithm in [18].520

1.4 Connections with Constructivity and the Natural Proofs Barrier521

There are close connections between MCSP and Razborov and Rudich’s Natural Proofs522

barrier [30]. In this section, we will focus on one specific connection between designing523

reductions to (C)-MCSP and a strengthening of the constructivity condition in the Natural524

Proofs barrier.4 We begin by describing the connection informally, before going into more525

detail.526

Intuition. Roughly speaking, Razborov and Rudich’s celebrated Natural Proofs result527

shows that any “natural” lower bound against a circuit class C can be made “algorithmic”528

and that this algorithm can be used to defeat certain types of cryptography constructed529

within the circuit class C. Since the general belief is that strong cryptography exists in even530

relatively weak looking circuit classes C, Razborov and Rudich’s result suggests it is unlikely531

that there are “natural proofs” showing strong lower bounds against many circuit classes.532

The relevance of this to (C)-MCSP is as follows. Suppose one has a reduction R from533

SAT to (C)-MCSP. In the proof of correctness of this reduction, one must use some lower534

bound methodM against C-circuits. If this methodM were “natural,” thenM could be535

made “algorithmic.” But then we argue that one could plug the algorithmic version ofM536

into the reduction R and obtain an efficient algorithm for SAT. Hence, if one believes that537

SAT does not have efficient algorithms, one should also believe that the lower bound method538

M cannot be made “algorithmic” (at least without making modifications toM).539

A More Formal Description. We now describe this idea in more detail. A “lower540

bound method”M is not a formal notion, so we instead look at collections S of lower bound541

statements. In particular, we consider sets S whose elements are of the form (T, s) where542

T is a truth table and s is a lower bound on the complexity of T . For most lower bound543

methodsM, there is a natural choice of the lower bound statements SM thatM “proves,”544

although we note that whether aM “proves” a lower bound statement is not necessarily545

well-defined.546

One example where it is easy to define SM is Håstad’s switching lemma, which implies547

that if a function f : {0, 1}n → {0, 1} cannot be made to compute a constant function by548

4 To the author’s knowledge, this connection was first observed in a conversation between the author and
Rahul Santhanam, who kindly allowed for its inclusion here.
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setting n− k of its inputs to 0/1-values, then f cannot be computed by a depth-d circuit of549

size 2(n−k)Ω(1/d) [14]. A natural choice of the collection of lower bound statements associated550

with the switching lemma is551

SM = {(T, s) : T is not constant on any subcube of dimension k and s < 2(n−k)Ω(1/d)
}.552

The connection to (C)-MCSP is as follows. Suppose one had a polynomial-time many-one553

reduction R from, say, SAT to (C)-MCSP. In the proof of correctness for this reduction, one554

must have some method for proving a collection of lower bound statements S such that if ϕ555

is unsatisfiable and (T, s) is output by the reduction, then the lower bound statement that556

the C-complexity of T is greater than s is an element of S, i.e. (T, s) ∈ S. On the other hand557

if ϕ is satisfiable and the reduction outputs (T, s), then we know that the C-complexity of T558

is at most s, so (T, s) 6∈ S because we require that S only contains correct lower bounds.559

Hence, we can conclude that the reduction R actually also implies that recognizing560

elements of S is coNP-hard! In fact, it shows that even the promise problem of distinguishing561

the lower bounds contained in S from strings in the set of YES instances of (C)-MCSP562

{(T, s) : the truth table T has C-circuits of size ≤ s}563

is coNP-hard. Thus, if one believes that, say, coNP 6⊆ P/poly, it better not be the case that564

the language S can be computed in P/poly.565

With this in mind, we say a collection of lower bound statements S against a circuit class566

C is (P/poly)-recognizable if there exists a family of polynomial-sized circuits that accepts all567

elements of S and rejects all the YES instances of (C)-MCSP. The logic above demonstrates568

that, under widely believed complexity assumptions, one should not be able to prove hardness569

for (C)-MCSP using (P/poly)-recognizable collections of lower bound statements (at least570

under the usual type of reductions: many-one, deterministic, polynomial-time). This is571

interesting because many lower bound methods we know, like Håstad’s switching lemma,572

yield collections of lower bound statements that are (P/poly)-recognizable.573

One nice property of the definition of (P/poly)-recognizability is monotonicity: if a set of574

lower bound statements S is (P/poly)-recognizable, then all subsets of S are also (P/poly)-575

recognizable. In the contrapositive, if a set S is not (P/poly)-recognizable, then any set that576

contains S is also not (P/poly)-recognizable. This is a consequence of the promise problem577

underlying the definition.578

Finally, we note that a collection of lower bound statements being (P/poly)-recognizable579

is closely related to Razborov and Rudich’s notion of (P/poly)-constructive. The main580

difference being that Razborov and Rudich’s formalization is only concerned with lower581

bound statements where the size lower bound s is fixed to some particular (usually super-582

polynomial) value.583

The Takeaway. Perhaps the most useful consequence of this connection is that it gives584

a helpful tool for designing reductions to (C)-MCSP, since it rules out many approaches that585

solely rely on easily recognizable lower bound statements. Indeed, our proof that MCSP? is586

not in P under ETH was inspired by our failure to rule out lower bounds obtained by gate587

elimination within this framework.588

This connection may also give further motivation for proving hardness results for589

(C)-MCSP. Since the collection of lower bound statements used to prove hardness for590

(C)-MCSP (likely) cannot be (P/poly)-recognizable, any proof requires considering lower591

bounds of a slightly different flavor than many existing lower bound techniques. One might592

hope that these different lower bound techniques might also be useful in understanding593



R. Ilango 15

other questions about the class C and, optimistically, might be a step towards proving594

non-naturalizing lower bounds.595

Indeed, our hardness result for (AC0
d)-MCSP gives evidence for these two motivations.596

Using the novel lower bound techniques in our reduction, we prove our “large gaps in formula597

complexity between depths” result (Theorem 2). Previous techniques like random restrictions598

do not seem capable of achieving the parameters in Theorem 2 (since random restrictions599

typically establish lower bounds of the form 2nO(1/d) and our lower bound has a much better600

dependence on d).601

Moreover, if we view Theorem 2 as separating the class of size-s depth-(d+ 1) formulas602

from size-(s+ 2Od(n)) depth-d formulas for some s, it is not clear to what extent this circuit603

class separation naturalizes in the sense of Razborov and Rudich’s Natural Proofs Barrier.604

For one, our method only proves a lower bound on a specific class of functions obtained via605

a direct sum. This seems to violate the largeness condition of a natural proof, which roughly606

says that the lower bound method should apply to a significant fraction of functions. It is607

worth noting that (to the author’s knowledge) it is open whether uniformly random functions608

f : {0, 1}n → {0, 1} have a gap as large as609

Ld(f)− Ld+1(f) ≥ 2Ω(n)
610

with high probability. Lupanov showed that611

Ld(f) = (1 + o(1))Ld+1(f)612

when d ≥ 3 with high probability [26]. Second, it is not clear how to recognize the functions613

witnessing this lower bound in polynomial time given a truth table. This seems to violate614

the constructivity condition of a Natural Proof.615

Of course, this does not mean that this separation does not naturalize, just that it does616

not obviously naturalize. Since results can naturalize in highly non-trivial ways (we mention617

an example in the next paragraph), it would be interesting to explore whether one can618

put this result in the framework of Natural Proofs. Either way, we view this result as a619

compelling example of the further insights that understanding (C)-MCSP could give.620

Caveats. Even though a collection of lower bound statements S might not be (P/poly)-621

recognizable, it is possible that there is a variation S ′ of S that is (P/poly)-recognizable and622

still captures all the “interesting” lower bounds given by S. A situation like this occurs in623

Razborov and Rudich’s paper where they show how to modify Smolensky’s [32] lower bound624

against AC0[p] circuits to fit into the natural proofs framework, even though it is unclear625

whether Smolensky’s original method is constructive.626

That being said, if a collection of lower bound statements S is used to prove hardness for627

(C)-MCSP, then any (P/poly)-recognizable modification S ′ (likely) loses the ability to prove628

hardness of (C)-MCSP, so it seems like some “interesting” lower bounds must be lost in this629

case.630

Another caveat worth mentioning is that our logic above assumes that the reduction from631

SAT to (C)-MCSP is a deterministic many-one reduction. In contrast, one can imagine more632

exotic reductions, where it is not clear how to define the collection of lower bound statements633

S used to prove the correctness of a reduction. Nevertheless, we feel that our logic is broadly634

applicable. In the specific reductions we prove (one is a deterministic many-one reduction635

and one is a randomized quasipolynomial time Turing reduction), the definition of S does636

makes sense, and we can indeed carry out a version of the logic above in order to argue that637

S is hard.638
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If the reader is curious, our randomized quasipolynomial time Turing reduction implies639

that following collection of lower bound statements against OR ◦ AC0
d−1 formulas is hard for640

coNP:641

{(T, s) :T is the truth table of the function f(x) ∧ g(y) where642

f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} are non-constant functions643

satisfying m ≥ n and s ≥ LOR
d (g) + LAND

d−1 (f) and644

min{2 · LND,.73(g), LND(g) + LND,γ(g)} ≥ LOR
d (g) + LAND

d−1 (f)}.645
646

where γ = 10−4 and the notation LND,· is defined in Section 2.1.647

1.5 Open Questions648

Perhaps the most tantalizing open question is whether one can show that MCSP is not649

in P under ETH. We discussed a promising looking approach to doing this at the end of650

Section 1.2.2.651

There are also several intriguing open questions related to our (AC0
d)-MCSP result. Can652

one prove that minimizing constant depth circuits is NP-hard? Our proof techniques heavily653

rely on the underlying model being formulas.654

Another interesting direction is better hardness of approximation for (AC0
d)-MCSP. Our655

results only yield hardness for small constant factor approximations. One should be able to656

do significantly better.657

One can also try to look beyond constant depth AND/OR formulas. What if one is658

allowed to use, say, ⊕ gates?659

Finally, what about improving the complexity gap result in Theorem 2? Can one give a660

multiplicative gap instead of an additive one? What about the case of circuits? Can one use661

our lower bound techniques to prove other interesting results?662

2 Preliminaries663

For a natural number n, we let [n] denote the set {1, . . . , n}. If E is some event, then we let664

1E denote the value that equals 1 if E occurs and 0 if E does not occur.665

Big Oh Notation. We use the standard “big oh” notation O, o,Ω, ω with the convention666

that n will always be the parameter that is going to infinity. When there are multiple667

parameters, we use subscripts to denote parameters being held constant. For example oδ(1)668

indicates a function that goes to zero as n goes to infinity and δ is held constant.669

Binary Strings. For a binary string x, we let wt(x) denote the weight of x, that is the670

number of ones in x. Unless otherwise specified, if x is a binary string, then xi denotes the671

ith bit of x.672

Partial Functions. For us, partial functions will refer to functions of the form γ : {0, 1}n →673

{0, 1, ?} for some n. We say a total function f : {0, 1}n → {0, 1} agrees with γ if f(x) = γ(x)674

for all x with γ(x) ∈ {0, 1}. Similarly, a circuit (or formula) C computes a partial function γ675

if C(x) = γ(x) for all x with γ(x) ∈ {0, 1}.676
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Multiplicative Approximations. Whenα ≥ 0, we say a function O computes a (1 + α)677

multiplicative approximation to a real-valued function f if for all inputs x678

f(x) ≤ O(x) ≤ (1 + α)f(x)679

Textbook Background: Complexity Theory and Boolean Functions. We will make use680

of basic complexity theoretic notions such as P, NP, and various types of reductions that are681

all explained for example in Arora and Barak’s excellent textbook [6]. We will also assume682

knowledge of basic circuit lower bound techniques such as gate elimination that are described683

in Wegner’s text [35] for example.684

The Exponential Time Hypothesis. The Exponential Time Hypothesis (abbreviated ETH)685

was first formulated by Impagliazzo, Paturi, and Zane [20, 21] and has been extremely686

useful for proving conditional lower bounds on various problems (see [24] for a survey). It is687

somewhat technical to define ETH formally, but, roughly speaking, it is a slight strengthening688

of the statement that 3-SAT cannot be solved deterministically in 2o(n) time.689

Circuits. We use the usual model of general circuits with NOT gates and fan-in two AND690

and OR gates. The size of a circuit C, denoted |C|, is the number of AND and OR gates in691

the circuit.692

2.1 Background on Formulas693

A formula ϕ on n-inputs consists of a rooted binary tree whose leaves are labelled by elements694

of the set {0, 1, x1,¬x1, . . . , xn,¬xn} and whose internal nodes are labelled by either AND695

or OR. The size of a formula ϕ, denoted |ϕ|, is the number of leaves in its underlying binary696

tree.697

Constant Depth Formulas. For each integer d ≥ 2, we let AC0
d denote the class of depth-d698

formulas. That is, formulas that are allowed to use AND and OR gates of unbounded fan-in,699

but whose underlying tree has depth at most d. The size of a constant depth formula is again700

the number of leaves in its underlying tree. We let AND ◦AC0
d−1 and OR ◦AC0

d−1 denote the701

classes of depth-d formulas with an AND and OR top/output gate respectively.702

For a function f , we let Ld(f) denote the size of the smallest depth-d formula computing703

f . Similarly, we let LAND
d (f) and LOR

d (f) denote the size of the smallest depth-d formula for704

computing f that has an AND top gate and OR top gate respectively.705

Direct Sums and DeMorgan’s Law. We will make heavy use of the following two elementary706

results about direct sums and negations of functions.707

I Proposition 6 (Direct Sum Theorem for Formulas). Let f : {0, 1}n → {0, 1} and g :708

{0, 1}m → {0, 1} be non-constant functions and let F∨ : {0, 1}n × {0, 1}m → {0, 1} be given709

by F∨(x, y) = f(x) ∨ g(y). The both of the following hold:710

LOR
d (F∨) = LOR

d (f) + LOR
d (g) and711

LAND
d (F∨) ≥ LAND

d (f) + LAND
d (g).712

Similarly, if F∧(x, y) = f(x) ∧ g(y), then we have713

LOR
d (F∧(x, y)) ≥ LOR

d (f) + LOR
d (g) and714

LAND
d (F∧(x, y)) = LAND

d (f) + LAND
d (g).715
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Proof. To demonstrate how these are proved, we show why LAND
d (F∨) ≥ LAND

d (f) + LAND
d (g).716

The other statements can be proved similarly.717

Let ϕ be a AND ◦ AC0
d−1 formula computing F∨. Since f is not constant there exists718

an x1 such that f(x1) = 0. Thus, if we set all the x leaves in ϕ to x1 and eliminate the719

resulting constant leaves using gate elimination, we obtain a formula ϕ′ for computing g720

whose size is at most the number of y leaves in ϕ. Thus, the number of y leaves in ϕ is at721

least LAND
d (g). Similarly, the number of x-leaves in ϕ must be at least LAND

d (f). Hence, we722

have that |ϕ| ≥ LAND
d (f) + LAND

d (g). J723

The next proposition is a consequence of DeMorgan’s Laws.724

I Proposition 7 (DeMorgan’s Laws).

LOR
d (¬f) = LAND

d (f)725

and726

LAND
d (¬f) = LOR

d (f).727

Finally, we can combine the above two propositions to characterize the complexity of the728

direct sum of a function with its negation.729

I Proposition 8. Let f be a function. Let F∨(x, y) = f(x) ∨ ¬f(y). Let F∧(x, y) =730

f(x) ∧ ¬f(y). All of the following quantities equal LAND
d (f) + LOR

d (f)731

Ld(F∧),732

Ld(F∨),733

LAND
d (F∧), and734

LOR
d (F∨).735

Proof. We just prove that736

Ld(F∧) = LAND
d (f) + LOR

d (f).737

The other proofs are similar. Using the direct sum rules in Proposition 6 and DeMorgan’s738

laws as in Proposition 7 we get that739

LAND
d (F∧) = LAND

d (f) + LAND
d (¬f) = LAND

d (f) + LOR
d (f).740

On the other hand, the direct sum rules and DeMorgan’s laws also imply that741

LOR
d (F∧) ≥ LOR

d (f) + LOR
d (¬f) = LOR

d (f) + LAND
d (f).742

Together, these imply that743

Ld(F∧) = LAND
d (f) + LOR

d (f)744

as desired. J745

Non-deterministic formulas and one-sided approximations. A non-deterministic formula746

ϕ with n-inputs and m non-deterministic inputs is just a (normal) formula ψ on (n+m)-747

inputs with the last m-inputs being designated as “non-deterministic” inputs. The value of748

ϕ on input x ∈ {0, 1}n equals749

ϕ(x) =
∨

y∈{0,1}m
ψ(x, y).750
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The size of ϕ, denoted |ϕ| is just the size of ψ.751

For our purposes, we will only be interested in non-deterministic formulas that have the752

same number of regular and non-deterministic inputs. Indeed, for a function f : {0, 1}n →753

{0, 1}, we let LND(f) denote the size of the smallest non-deterministic formula for computing754

f with n non-deterministic inputs.755

We will also make use of simple bounds on the number of non-deterministic formulas756

with n regular inputs and n non-deterministic inputs.757

I Proposition 9 (Bound on the number of non-deterministic formulas). The number of758

functions computed by non-deterministic formulas of size at most s with n-inputs and n759

non-deterministic inputs is at most760

2s log(100n).761

Proof. It suffices to count the number of non-deterministic formulas of size exactly s since if762

a function can be computed by a formula of size less than s, it can clearly also be computed763

by a formula of size exactly s by adding in gates that do not do anything.764

The number of binary trees with s leaves is at most 4s+1 by bounds on the Catalan765

number. Each of the s−1 internal nodes can be labeled by either an AND or OR gate, so this766

gives 2s−1 possibilities. Finally the leaf nodes can each be labelled one of 4n+ 2 possibilities767

(either one of the 2n variables, the negation of one of the 2n variables, or a constant 0, 1).768

This gives (4n+ 2)s possibilities.769

In total, this gives us a bound of770

4s+12s−1(4n+ 2)s = 23s+12s log(4n+2) ≤ 24s2s log(6n) = 2s log(24)+s log(6n) ≤ 2s log(100n)
771

where we use that s and n are both at least one. J772

Finally, if 0 ≤ ε ≤ 1, we say a function g : {0, 1}n → {0, 1} computes an ε one-sided773

approximation of a function f : {0, 1}n → {0, 1} if both of the following conditions hold774

g−1(1) ⊆ f−1(1), and775

|g−1(1)| ≥ ε · |f−1(1)|.776

We let LND,ε(f) denote the minimum of LND(g) for all functions g computing an ε one-sided777

approximation of f .778

Read Once Formulas. A read once formula is a formula where each input variable occurs779

in at most one leaf. It is easy to see that any circuit that reads s inputs and has s− 1 gates780

must be a read once formula. A monotone read once formula is a read once formula that781

reads each input variable positively (i.e., it does not use any negations).782

2.2 Versions of MCSP783

In this paper, we will mainly consider three versions of MCSP.784

MCSP. The Minimum Circuit Size Problem, MCSP, is defined as follows:785

Given: the truth table T ∈ {0, 1}2n of a Boolean function f : {0, 1}n → {0, 1} and an786

integer size parameter s.787

Decide: Does there exists a circuit of size at most s that computes f?788
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MCSP for C-circuits: (C)-MCSP. The Minimum C-Circuit Size Problem, (C)-MCSP, is789

defined as follows:790

Given: the truth table T ∈ {0, 1}2n of a Boolean function f : {0, 1}n → {0, 1} and an791

integer size parameter s.792

Decide: Does there exists a C-circuit of size at most s that computes f?793

MCSP for partial functions: MCSP?. The Minimum Circuit Size Problem for Partial794

Functions, MCSP?, is defined as follows:795

Given: the truth table T ∈ {0, 1, ?}2n of a partial Boolean function γ : {0, 1}n → {0, 1, ?}796

and an integer size parameter s.797

Decide: Does there exists a circuit of size at most s that computes γ?798

3 ETH Hardness for MCSP?
799

We will prove hardness for MCSP? by giving a reduction from the 2n × 2n Bipartite Per-800

mutation Independent Set problem. This problem was introduced by Lokshtanov, Marx,801

and Saurabh who proved hardness for it under ETH [25]. 2n× 2n Bipartite Permutation802

Independent Set is defined as follows:803

Given: An undirected graph G over the vertex set [2n]× [2n] where every edge is between804

J1 = {(j, k) : j, k ∈ [n]} and J2 = {(n+ j, n+ k) : j, k ∈ [n]}.805

Decide: Does there exist a permutation π : [2n]→ [2n] such that the set806

{(1, π(1)), . . . , (2n, π(2n))}807

is both a subset of J1 ∪ J2 and an independent set of G?808

The following definition is equivalent and will be easier for us to work with.809

Given: A directed graph G on the vertex set [n]× [n] with an edge set E.810

Decide: Does there exist a permutation π : [2n]→ [2n] such that all of the following811

are true:812

π([n]) = [n],813

π({n+ i : i ∈ [n]}) = {n+ i : i ∈ [n]}, and814

if ((j, k), (j′, k′)) ∈ E, then either π(j) 6= k or π(j′ + n) 6= k′ + n.815

If ETH is true, then this problem cannot be solved much faster than brute forcing over816

all (roughly 2n logn) permutations.817

I Theorem 10 (Lokshtanov, Marx, and Saurabh [25]). 2n× 2n Bipartite Permutation Inde-818

pendent Set cannot be solved in deterministic time 2o(n logn) unless ETH fails.819

We prove hardness for MCSP? by giving a reduction from 2n× 2n Bipartite Permutation820

Independent Set.821

I Theorem 11. MCSP? cannot be solved in deterministic time N log logN on truth tables822

of length-N assuming ETH. In particular, detecting whether a truth table T ∈ {0, 1, ?}2n823

can be computed by a monotone read once formula cannot be solved in deterministic time824

No(log logN) assuming ETH where n = logN .825

Proof. We give a reduction from 2n× 2n Bipartite Permutation Independent Set to MCSP?826

that runs in deterministic 2O(n) time.827
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Reduction Algorithm828

Before we describe the reduction, we introduce some notation. For an i ∈ [n], we let829

ei ∈ {0, 1}n denote the indicator vector with a one in the ith entry and zeroes everywhere830

else. Similarly, we let ei ∈ {0, 1}n denote the complementary vector, with a zero in the ith831

entry and ones everywhere else.832

The reduction R works as follows. Given an instance of 2n× 2n Bipartite Permutation833

Independent Set defined by a directed graph G = ([n]× [n], E), the reduction outputs the834

truth table of the partial function γ : {0, 1}2n × {0, 1}2n × {0, 1}2n → {0, 1, ?} given by835

γ(x, y, z) =836 

∨
i∈[2n](yi ∧ zi) , if x = 02n∨
i∈[2n] zi , if x = 12n∨
i∈[2n](xi ∨ yi) , if z = 12n

0 , if z = 02n

ORn(x1, . . . , xn) , if z = 1n0n and y = 02n

ORn(xn+1, . . . , x2n) , if z = 0n1n and y = 02n

1 , if ∃ ((j, k), (j′, k′)) ∈ E such that (x, y, z) = (ekek′ , 02n, ejej′)
? , otherwise

.837

Running time838

It is easy to see that γ is well-defined and that the truth table of γ can be output in time839

2O(n) given G.840

Correctness841

We prove the correctness of this reduction in stages, by showing each of the following are842

equivalent:843

1. MCSP?(γ, 6n− 1) = 1844

2. γ can be computed by a read once formula845

3. there exists a permutation π : [2n]→ [2n] such that
∨
i∈[2n]((xπ(i) ∨ yi) ∧ zi) computes γ846

4. there exists a permutation π : [2n]→ [2n] that satisfies the instance of 2n× 2n Bipartite847

Permutation Independent Set given by G.848

The remainder of the proof is dedicated to proving the equivalences (1) ⇐⇒ (2), (2)849

⇐⇒ (3), and (3) ⇐⇒ (4).850

(1) ⇐⇒ (2)851

We need to show that MCSP?(γ, 6n− 1) = 1 if and only if γ can be computed by a read once852

formula.853

This reverse direction is obvious (note that size for circuits equals the number of gates,854

but size for formulas equals the number of leaves).855

The forward direction follows from γ depending on all of its input variables. It depends856

on all its y and z input variables because857

γ(x, y, z) =
∨
i∈[2n]

(yi ∧ zi)858
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when x = 02n. It depends on all its x input variables because when z = 12n
859

γ(x, y, z) =
∨
i∈[2n]

(xi ∨ yi).860

(2) ⇐⇒ (3)861

We need to show that γ can be computed by a read once formula if and only if there exists a862

permutation π : [2n]→ [2n] such that
∨
i∈[2n]((xπ(i) ∨ yi) ∧ zi) computes γ.863

The reverse direction is obvious. The forward direction follows from the following lemma,864

whose proof we defer to the end of the section.865

I Lemma 12. Suppose ϕ is a read once formula that computes a partial function γ :866

{0, 1}2n × {0, 1}2n × {0, 1}2n satisfying867

γ(x, y, z) =



∨
i∈[2n](yi ∧ zi) , if x = 02n∨
i∈[2n] zi , if x = 12n∨
i∈[2n](xi ∨ yi) , if z = 12n

0 , if z = 02n

.868

Then there exists a permutation π : [2n] → [2n] such that ϕ(x, y, z) equals, as a formula,869 ∨
i∈[2n]((xπ(i) ∨ yi) ∧ zi).870

Note that our γ actually satisfies more constraints imposed on it than the ones stated in871

this lemma. For example, we specified γ(x, y, z) = ORn(x1, . . . , xn) when (y, z) = (02n, 1n0n).872

But these extra constraints are not needed to prove the lemma.873

(3) ⇐⇒ (4)874

We need to show that there exists a permutation π : [2n]→ [2n] such that
∨
i∈[2n]((xπ(i) ∨875

yi) ∧ zi) computes γ if and only if there exists a permutation π : [2n]→ [2n] that satisfies876

the instance of 2n× 2n Bipartite Permutation Independent Set given by G.877

The proof of this equivalence is long because there are many conditions to check. We give878

the full proof below, however, we remark that it essentially amounts to carefully plugging in879

definitions.880

We start with the forward direction. Suppose that π : [2n] → [2n] is a permutation881

such that
∨
i∈[2n]((xπ(i) ∨ yi) ∧ zi) computes γ. We will show that π satisfies the constraints882

required in 2n× 2n Bipartite Permutation Independent Set. That is, all the following hold883

1. π([n]) = [n],884

2. π({n+ i : i ∈ [n]}) = {n+ i : i ∈ [n]}, and885

3. if ((j, k), (j′, k′)) ∈ E, then either π(j) 6= k or π(j′ + n) 6= k′ + n886

The proof that (1) and (2) hold are similar, so we just prove (1). We need to show that887

if i ∈ [n], then π(i) ∈ [n]. This follows from the following series of equalities when setting888

(x, y, z) = (ei0n, 02n, 1n0n)889

1 = ORn(x1, . . . , xn)890

= γ(x, y, z)891

=
∨
i∈[2n]

((xπ(i) ∨ yi) ∧ zi)892

= 1π(i)∈[n]893
894
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where the justifications for these equalities are (in order):895

since x = ei0n and i ∈ [n],896

from the definition of γ when (x, y, z) = (ei0n, 02n, 1n0n),897

since
∨
i∈[2n]((xπ(i) ∨ yi) ∧ zi) computes γ, and898

since (x, y, z) = (ei0n, 02n, 1n0n)899

This completes our justification that (1) and (2) hold.900

For (3), suppose that ((j, k), (j′, k′)) ∈ E. We need to show that either π(j) 6= k901

or π(j′ + n) 6= k′ + n. This follows from the following series of equalities when setting902

(x, y, z) = (ekek′ , 02n, ejej′)903

1 = γ(x, y, z)904

=
∨
i∈[2n]

((xπ(i) ∨ yi) ∧ zi)905

= xπ(j) ∨ xπ(j′+n)906

= 1π(j)6∈{k,k′+n} ∨ 1π(j′+n) 6∈{k,k′+n}907

= 1π(j)6=k ∨ 1π(j′+n) 6=k′+n908
909

where the justifications for these equalities are (in order):910

from the definition of γ when (x, y, z) = (ekek′ , 02n, ejej′) and ((j, k), (j′, k′)) ∈ E,911

since
∨
i∈[2n]((xπ(i) ∨ yi) ∧ zi) computes γ,912

since (y, z) = (02n, ejej′),913

since x = ekek′ , and914

since we have already shown that (1) and (2) must hold (i.e, that π([n]) = [n] and915

π({n+ i : i ∈ [n]}) = {n+ i : i ∈ [n]}).916

This completes our proof of the forward direction.917

Now we show the reverse direction. Suppose π : [2n]→ [2n] satisfies the constraints in G.918

In other words, all of the following are true:919

π([n]) = [n]920

π({n+ i : i ∈ [n]}) = {n+ i : i ∈ [n]}921

if ((j, k), (j′, k′)) ∈ E, then either π(j) 6= k or π(j′ + n) 6= k′ + n922

We will show that
∨
i∈[2n]((xπ(i) ∨ yi)∧ zi) computes γ. In other words, we need to check923

the following seven cases:924 ∨
i∈[2n]

((xπ(i) ∨ yi) ∧ zi) =925



∨
i∈[2n]

(yi ∧ zi) , if x = 02n (1)

∨
i∈[2n]

zi , if x = 12n (2)

∨
i∈[2n]

(xi ∨ yi) , if z = 12n (3)

0 , if z = 02n (4)
ORn(x1, . . . , xn) , if z = 1n0n and y = 02n (5)
ORn(xn+1, . . . , x2n) , if z = 0n1n and y = 02n (6)
1 , if ∃ ((j, k), (j′, k′)) ∈ E with (x, y, z) = (ekek′ , 02n, ejej′)(7)
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The proof in cases (1) - (4) are easy to see. The proof in cases (5) and (6) follow from926

the fact that π([n]) = [n] and π({n+ i : i ∈ [n]}) = {n+ i : i ∈ [n]}.927

Lastly, we must check case (7). Suppose that ((j, k), (j′, k′)) ∈ E. When (x, y, z) =928

(ekek′ , 02n, ejej′), we have that929 ∨
i∈[2n]

((xπ(i) ∨ yi) ∧ zi) = xπ(j) ∨ xπ(j′+n)930

= 1π(j)6∈{k,k′+n} ∨ 1π(j′+n) 6∈{k,k′+n}931

= 1π(j)6=k ∨ 1π(j′+n) 6=k′+n932

= 1933
934

where the justification for each equality is (in order):935

since y = 02n and z = ejej′ ,936

since x = ekek′ ,937

since π([n]) = [n] and π({n+ i : i ∈ [n]}) = {n+ i : i ∈ [n]}, and938

since π satisfies all the constraints of G, we know that for ((j, k), (j′, k′)) ∈ E either939

π(j) 6= k or π(j′ + n) 6= k′ + n940

This completes the reverse direction. J941

We now give the proof of Lemma 12. In this proof, it will be important to distinguish942

between when two formulas are equal as functions (i.e., they compute the same function)943

and when they are equal as formulas (i.e., they are isomorphic as labeled binary trees up to944

the commutativity of AND and OR gates). We will try to be explicit about this by prefacing945

equalities by “as functions” or “as formulas.”946

I Lemma 12. Suppose ϕ is a read once formula that computes a partial function γ :947

{0, 1}2n × {0, 1}2n × {0, 1}2n satisfying948

γ(x, y, z) =



∨
i∈[2n](yi ∧ zi) , if x = 02n∨
i∈[2n] zi , if x = 12n∨
i∈[2n](xi ∨ yi) , if z = 12n

0 , if z = 02n

.949

Then there exists a permutation π : [2n] → [2n] such that ϕ(x, y, z) equals, as a formula,950 ∨
i∈[2n]((xπ(i) ∨ yi) ∧ zi).951

Proof of Lemma 12. We begin by proving three claims about the structure of ϕ. In Claim 13,952

we show that ϕ is a monotone read once formula with 6n leaves, and thus 6n− 1 gates. Then,953

in Claim 14 we show that ϕ must have 4n− 1 OR gates, and finally, Claim 15 shows that954

each z variable leaf feeds into an AND gates.955

B Claim 13. ϕ reads each x, y, and z input variable exactly once, and it reads each x, y,956

and z variable positively (i.e. it uses no negated input variables).957

Proof. ϕ is a read once formula so each input variable can be used at most once, so to show958

that ϕ reads each input variable exactly once we just need to show that γ depends on every959

input.960

Regarding positivity, in our model of formulas, negations are pushed to the leaf level, so961

only the monotone gates AND and OR can be used (no NOT gates). Thus, if the read once962

formula ϕ read the negated version of an input variable, then its output would have to be963

monotone in the value of that negated variable.964
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Now, when x = 02n, γ(x, y, z) =
∨
i∈2n(yi ∧ zi), so γ depends on all its y and z variables.965

Moreover, the output of
∨
i∈2n(yi ∧ zi) is monotone in all the y and z variables, so we know966

that each y and z input cannot be read negatively.967

A similar argument can be made for the x variables, by setting z = 12n, in which case968

γ(x, y, z) =
∨
i∈2n(xi ∨ yi). C969

B Claim 14. ϕ has at least 4n− 1 OR gates.970

Proof. By setting z = 12n and applying a standard gate elimination argument, one can971

eliminate gates in ϕ to obtain a read once formula ψ for computing
∨
i∈[2n](xi ∨ yi) with 4n972

leaves and 4n− 1 gates. It is easy to see that all 4n− 1 of the gates in ψ must be OR gates.973

As a result, these 4n− 1 OR gates must also be in ϕ. C974

B Claim 15. For each i ∈ [2n], the zi leaf in ϕ feeds into an AND gate.975

Proof. Fix some i ∈ [2n]. From Claim 13, we know that zi is read exactly once, positively in976

the formula ϕ. If, for contradiction, the zi leaf fed into an OR gate, then by setting zi = 1977

and applying a standard gate elimination argument, we could obtain a formula ψ with 6s− 2978

leaves for computing γ(x, y, z) when zi = 1.979

This is a contradiction because γ(x, y, z) depends on 6s− 1 of its inputs even when zi = 1.980

In particular, γ(x, y, 12n) =
∨
j∈[2n](xj ∨ yj), so it depends on all 4s of its x and y inputs.981

And γ(02n, y, z) =
∨
j∈[2n](yi ∧ zi) so it depends on the remaining 2s− 1 of its z inputs. C982

Now, we introduce some important subformulas of ϕ. For each i ∈ [2n], let ϕi be the983

subformula of ϕ such that zi ∧ ϕi is a subformula of ϕ. Crucially, Claim 16 shows that984

ϕ1, . . . , ϕ2n all do not read any z inputs.985

B Claim 16. For each i ∈ [2n], the formula ϕi does not read any z input leaf.986

Proof. Since zi ∧ ϕi is a subformula of ϕ and ϕ is a read once formula, we know that no zi987

leaf occurs in ϕi.988

Next, consider some i′ ∈ [n] \ {i}. For contradiction, suppose ϕi read the zi′ input. Then989

the output of the read once formula ϕ could not depend on the input zi′ when zi = 0 (since990

the read once property implies that the only time ϕ reads the input zi′ is in the subformula991

zi ∧ ϕi(x, y, z), which always evaluates to zero when zi = 0). But when x = 02n and zi = 0,992

ϕ(x, y, z) =
∨
j∈[2n](yj ∧ zj), so the output of ϕ does still depend on zi′ when zi = 0, giving993

us a contradiction. C994

The key consequence of Claim 16 is that it means the subformulas ϕ1 ∧ z1, . . . , ϕ2n ∧ z2n995

are all disjoint subformulas of ϕ (since none of the ϕi can read a z variable). This implies996

that ϕ contains 2n AND gates. Since we already knew that there were 4n− 1 OR gates in ϕ997

(by Claim 14) and 6n− 1 gates total (by Claim 13), this means the only AND gates in ϕ are998

the 2n AND gates at the top of the subformulas ϕ1∧ z1, . . . , ϕ2n∧ z2n. Using this, along with999

the knowledge from Claim 13 that ϕ reads every input positively, we get that as a formula,1000

ϕ = (
∨
w∈I

w) ∨ (
∨
i∈[2n]

(zi ∧ ϕi(x, y, z))1001

where I is some subset of the x and y input variables (i.e., I ⊆ {x1, . . . , x2n, y1, . . . , y2n}).1002

In fact, I must actually be empty!1003

B Claim 17. I = ∅.1004



26 Versions of MCSP are Hard

Proof. When z = 02n, we have that1005

0 = ϕ(x, y, z) = (
∨
w∈I

w) ∨ (
∨
i∈[2n]

(zi ∧ ϕi(x, y, z)) =
∨
w∈I

w.1006

C1007

So now, we know that, as a formula, we have that1008

ϕ =
∨
i∈[2n]

(zi ∧ ϕi(x, y, z)).1009

Next, we use the fact that ϕi can only use OR gates (since all the AND gates in ϕ are1010

already accounted for). In particular, this, combined with the fact that ϕ is a monotone1011

read once formula (by Claim 13), implies there exists a partition I1, . . . , I2n of the set1012

{x1, . . . , x2n, y1, . . . , y2n} such that, as a formula,1013

ϕ =
∨
i∈[2n]

(z ∧ (
∨
w∈Ii

w).1014

Therefore, when x = 02n, we have that, as functions,1015 ∨
i∈[2n]

(yi ∧ zi) = γ(x, y, z) = ϕ(x, y, z) =
∨
i∈[2n]

(zi ∧ (
∨
w∈Ii

w).1016

From this equality, it is easy to see that we must have yi ∈ Ii for all i ∈ [2n].1017

As a result, we can conclude that, as a formula,1018

ϕ =
∨
i∈[2n]

(zi ∧ (yi ∨
∨
w∈Ji

w)1019

where J1, . . . , J2n is some partition of {x1, . . . , x2n}.1020

Finally, when x = 12n, we have that, as a function,1021 ∨
i∈[2n]

(zi ∧ (yi ∨
∨
w∈Ji

w) = ϕ(x, y, z) = γ(x, y, z) =
∨
i∈[2n]

zi.1022

From this we can conclude that there is a permutation π : [2n]→ [2n] such that, as a formula,1023

ϕ =
∨
i∈[2n]

(zi ∧ (yi ∨ xπ(i))1024

which is what we desired to show. J1025

4 Main Lower Bound for Constant Depth Formulas: From Depth d1026

to d + 11027

In this section we prove our main constant depth formula lower bound.1028

I Theorem 5. Let d ≥ 3. Let γ = 1
104 . Let f : {0, 1}n → {0, 1} be a non-constant function,1029

and let g : {0, 1}m → {0, 1} be a non-constant function with m ≥ n that satisfies1030

min{2 · LND,.73(g), LND(g) + LND,γ(g)} ≥ LOR
d (g) + LAND

d−1 (f).1031

Then1032

LOR
d (f(x) ∧ g(y)) ≥ LOR

d (g) + LAND
d−1 (f).1033
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Proof. For convenience, let F : {0, 1}n ×{0, 1}m → {0, 1} be given by F (x, y) = f(x)∧ g(y).1034

For contradiction, suppose there is the a OR ◦ AC0
d−1 formula ϕ for computing F of size1035

less than LOR
d (g) + LAND

d−1 (f). We assume without loss of generality that ϕ alternates between1036

OR and AND gates at each level, and thus we can write ϕ =
∨
i∈[t] ϕi where each ϕi is an1037

AND ◦ AC0
d−2 formula.1038

For each i ∈ [t], let the set Si ⊆ {0, 1}m denote the set of y-inputs ϕi accepts when using1039

the x-inputs non-deterministically. In other words,1040

Si = {y ∈ {0, 1}m :
∨

x∈{0,1}n
ϕi(x, y) = 1}.1041

Since ϕ computes F (x, y) = f(x)∧ g(y), it is not too hard to see that the union of the Si1042

sets is exactly the set of YES instances of g.1043

B Claim 18.
⋃
i∈[t] Si = g−1(1).1044

Proof. First, we show that
⋃
i∈[t] Si ⊆ g−1(1). If y ∈ Si for some i ∈ [t], then there exists1045

some x such that ϕi(x, y) = 1. Thus we have that1046

f(x) ∧ g(y) = F (x, y) = ϕ(x, y) =
∨
i∈[t]

ϕi(x, y) = 11047

so g(y) = 1, so y ∈ g−1(1).1048

For the other direction, suppose that y ∈ g−1(1). Since f is not constant, there exists1049

some x such that f(x) = 1. Then1050

1 = f(x) ∧ g(y) = F (x, y) = ϕ(x, y) =
∨
i∈[t]

ϕi(x, y)1051

so there exists some i ∈ [t] such that ϕi(x, y) = 1 so y ∈ Si. C1052

However, an even stronger claim is true. Not only do the sets S1, . . . , St cover g−1(1),1053

but they must actually cover g−1(1) in a “redundant” way, which we make formal in the1054

following claim.1055

B Claim 19. Each y ∈ g−1(1) is an element of at least two distinct sets in the list S1, . . . , St.1056

Proof. For contradiction, suppose not. Since we know that g−1(1) =
⋃
i∈[t] Si from Claim 18,1057

it follows that there exists some y1 ∈ g−1(1) such that y1 is in exactly one of the sets in the1058

list S1, . . . , St.1059

Without loss of generality, assume that y1 is only in the set S1. By definition, this means1060

that ϕi(x, y1) = 0 for all i ≥ 2 and all x ∈ {0, 1}n. As a result, we have the following equality1061

for all x ∈ {0, 1}n1062

f(x) = f(x) ∧ 1 = f(x) ∧ g(y1) = F (x, y1) =
∨
i∈[t]

ϕi(x, y1) = ϕ1(x, y1).1063

Hence, ϕ1 can be made into an AND ◦ AC0
d−2 formula for f by fixing its y-inputs to y1. This1064

implies that ϕ1 has at least LAND
d−1 (f) many x-leaves.1065

Clearly, this means that ϕ also has at least LAND
d−1 (f) many x-leaves. On the other hand,1066

since f is non-constant, there exists an x1 such that f(x1) = 1. Thus, if we set the x-inputs1067

of ϕ to be x1, we have that ϕ(x1, y) computes g(y). Hence, g has at least LOR
d (g) many1068

y-leaves.1069
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Summing the bound on the x-leaves and the y-leaves, we get that1070

|ϕ| ≥ LOR
d (g) + LAND

d−1 (f)1071

which contradicts our supposition that |ϕ| < LOR
d (g) + LAND

d−1 (f). C1072

We can use this “redundancy” to show that each of the Si sets must be “small.” This is1073

roughly because the redundancy implies that even if you remove any one of the ϕi from ϕ,1074

what remains can be used to make a non-deterministic formula for g and thus, still has most1075

of the “cost” of computing g within it.1076

B Claim 20. For all i ∈ [t], we have |Si| ≤ γ · |g−1(1)|.1077

Proof. For contradiction, suppose that |Si| > γ · |g−1(1)| for some i ∈ [t]. This implies that,1078

viewing the x-inputs to ϕi non-deterministically, ϕi yields a non-deterministic one-sided1079

γ-approximation of g, so1080

|ϕi| ≥ LND,γ(g).1081

On the other hand, since
⋃
j∈[t] Sj = g−1(1) from Claim 18 and since each element of1082

g−1(1) is contained in two sets in the list S1, . . . , St by Claim 19, we know that1083 ⋃
j∈[t]\{i}

Sj = g−1(1).1084

From the definition of S1, . . . , St, this implies that1085 ∨
j∈[t]\{i}

ϕj1086

is a non-deterministic formula for g, viewing the x-inputs non-deterministically. Hence,1087 ∑
j∈[t]\{i}

|ϕj | ≥ LND(g).1088

Thus, putting these two bounds together, we have that1089

|ϕ| = |ϕi|+
∑

j∈[t]\{i}

|ϕj | ≥ LND,γ(g) + LND(g).1090

However, an assumption in the theorem statement is that LND(g) + LND,γ(g) ≥ LOR
d (g) +1091

LAND
d−1 (f), so we have that1092

|ϕ| ≥ LOR
d (g) + LAND

d−1 (f)1093

which contradicts our supposition that |ϕ| < LOR
d (g) + LAND

d−1 (f). C1094

We can then use the fact that the sets S1, . . . , St have small cardinality and the fact that1095

they form a “redundant” cover of g−1(1) in order to argue that we can partition the list of1096

sets S1, . . . , St into two disjoint lists that each covers a significant portion of g−1(1). This is1097

made formal in the following claim.1098

B Claim 21. There exist disjoint subsets L,R ⊆ [t] such that for all T ∈ {L,R},1099

|
⋃
i∈T

Si| ≥ .73|g−1(1)|.1100
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Before proving Claim 21, we show how we can finish the proof using the claim. Let L and1101

R be sets satisfying the claim. For T ∈ {L,R}, define the OR ◦ AC0
d−1 formula ϕT given by1102

ϕT =
∨
i∈T

ϕi.1103

Since for each T ∈ {L,R}, we have that1104

|
⋃
i∈T

Si| ≥ .73|g−1(1)|,1105

we know that ϕT is a non-deterministic .73-one-sided approximation for g. Hence for all1106

T ∈ {L,R}, we have that |ϕT | ≥ LND,.73(g).1107

Since L and R are disjoint, we have that1108

|ϕ| ≥ |ϕL|+ |ϕR| ≥ 2 · LND,.73(g) ≥ LOR
d (g) + LAND

d−1 (f)1109

which contradicts our supposition that |ϕ| < LOR
d (g) + LAND

d−1 (f).1110

It remains to prove Claim 21.1111

Proof of Claim 21. We prove this using the probabilistic method. For each element i ∈ [t],1112

flip an independent, unbiased coin to decide whether i should be placed in L or in R. We1113

will argue that this yields a disjoint L and R pair with the desired properties with positive1114

probability using the second moment method.1115

We will now show that1116

Pr
L

[|
⋃
i∈L

Si| ≥ .73|g−1(1)|] ≥ 2
3 .1117

Assuming this is true, we know by symmetry that1118

Pr
R

[|
⋃
i∈R

Si| ≥ .73|g−1(1)|] ≥ 2
31119

and so by a union bound it follows that1120

Pr
L,R

[|
⋃
i∈L

Si| ≥ .73|g−1(1)| AND |
⋃
i∈R

Si| ≥ .73|g−1(1)|] > 01121

which is what we desired to prove.1122

Hence, it suffices to prove that1123

Pr
L

[|
⋃
i∈L

Si| ≥ .73|g−1(1)|] ≥ 2
3 .1124

For simplicity, let X denote the random variable |
⋃
i∈L Si| and for each y ∈ g−1(1), let1125

Xy denote the indicator random variable for the event that y ∈
⋃
i∈L Si. Then using linearity1126
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of expectation we have that1127

E[X] = E[
∑

y∈g−1(1)

Xy]1128

=
∑

y∈g−1(1)

E[Xy]1129

=
∑

y∈g−1(1)

(1− 2−|{i∈[t]:y∈Si}|)1130

≥
∑

y∈g−1(1)

(1− 2−2)1131

= 3
4 |g
−1(1)|.1132

1133

where the inequality follows from the fact that each y ∈ g−1(1) lies in two at least two1134

distinct sets in the list S1, . . . , St as proved in Claim 19.1135

Thus, Chebyshev’s inequality the implies that1136

Pr[X ≤ .73|g−1(1)|] ≤ Pr[|X − E[X]| ≥ .02|g−1(1)|] ≤ Var[X]
(.02|g−1(1)|)21137

Thus, if we could show that Var[X]
(.02|g−1(1)|)2 ≤ 1

3 , then we would have that1138

Pr[X ≤ .73|g−1(1)|] ≤ 1
31139

as desired.1140

We now show that Var[X]
(.02|g−1(1)|)2 ≤ 1

3 , or equivalently, that1141

Var[X] ≤ 4
3 · 104 |g

−1(1)|2.1142

Using the fact that X =
∑
y∈g−1(1)Xy, we have that1143

Var[X] =
∑

y,y′∈g−1(1)

Cov[Xy, Xy′ ]1144

1145
1146

Now fix some y ∈ g−1(1), and we will bound
∑
y′∈g−1(1) Cov[Xy, Xy′ ]. Let Dy = {y′ :1147

∃i ∈ [t] such that {y, y′} ⊆ Si}. Note that if y′ 6∈ Dy, then y′ and y never appear in any set1148

Si together, and hence Xy and X ′y are independent random variables. Thus,1149 ∑
y′∈g−1(1)

Cov[Xy, Xy′ ] =
∑
y′∈Dy

Cov[Xy, Xy′ ].1150

Since |Si| ≤ γ|g−1(1)| for all i ∈ [t] by Claim 20, it follows that1151

|{i ∈ [t] : y ∈ Si}| ≥
|Dy|

γ|g−1(1)|1152

which implies that1153

E[Xy] ≥ 1− 2−
|Dy|

γ|g−1(1)| .1154
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Hence,1155 ∑
y′∈Dy

Cov[Xy, Xy′ ] =
∑
y′∈Dy

Cov[Xy, Xy′ ]1156

=
∑
y′∈Dy

E[XyXy′ ]− E[Xy]E[Xy′ ]1157

≤
∑
y′∈Dy

E[Xy′ ]− E[Xy]E[Xy′ ]1158

≤
∑
y′∈Dy

E[Xy′ ]− (1− 2−
|Dy|

γ|g−1(1)| )E[Xy′ ]1159

≤ |Dy|2
− |Dy|
γ|g−1(1)|1160

≤ γ|g−1(1)|
ln 2 2− 1

ln 21161

≤ γ|g−1(1)|1162
1163

where the second to last inequality follows from some calculus.1164

Hence, we have that1165

Var[X] =
∑

y,y′∈g−1(1)

Cov[Xy, Xy′ ] ≤ γ|g−1(1)|2 ≤ 4
3 · 104 |g

−1(1)|21166

since γ = 1
104 .1167

C1168

J1169

5 (AC0
d)-MCSP is NP-hard1170

We use the lower bound technique in Theorem 5 to prove hardness for constant depth formula1171

minimization.1172

I Theorem 22. Let d ≥ 2 be an integer. Then there exists an αd > 0 such that computing1173

Ld(·) up to a factor of (1 + αd) is NP-complete under randomized quasipolynomial Turing1174

reductions.1175

At a high-level, our strategy for proving the NP-hardness of computing Ld(·) breaks into1176

three parts (informally):1177

1. Show that for all d ≥ 2 one can reduce computing LOR
d to Ld, so it suffices to prove NP1178

hardness for LOR
d .1179

2. Show that when d = 2 it is NP-hard to compute LOR
d to any constant factor (this part1180

was already known).1181

3. Show that when d ≥ 3 one can compute a small approximation to LOR
d−1 using an oracle1182

that computes a small approximation to LOR
d . Conclude that Ld is NP-hard to compute1183

for all d ≥ 2.1184

Each of these parts correspond to the following three theorems (in order).1185

I Theorem 23. Let d ≥ 2 be an integer. Let α ≥ 0. Given access to an oracle O that1186

computes an (1 +α) multiplicative approximation to Ld and given the truth table of a function1187

f : {0, 1}n → {0, 1}, one can compute LOR
d (f) and LAND

d (f) up to a factor of (1 + α)2 in1188

deterministic quasipolynomial time.1189
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I Corollary 24 (Easy corollary of Khot and Saket [23]). Given the truth table of a function f :1190

{0, 1}n → {0, 1}, determining LOR
2 (f) up to a factor of n1−ε is NP-hard under quasipolynomial1191

time Turing reductions for arbitrarily small ε > 0.1192

We note that [23] actually proves the NP-hardness of LOR
2 when the size of a DNF is the1193

number of terms in the DNF rather than the number of leaves. However, there is an easy1194

reduction between computing these two size measures, which we show in Section 7.1195

I Theorem 25. Let d ≥ 3. Let 0 < α < 10−7. Given access to an oracle O that computes1196

LOR
d up to a factor of (1 +α) and given the truth table of a function f : {0, 1}n → {0, 1}, one1197

can compute LOR
d−1(f) up to a (1 +O(α)) factor in randomized quasipolynomial time.1198

In the next three sections, we prove these theorems in reverse order. We finish this section1199

by showing that these three parts together imply Theorem 22.1200

Proof of Theorem 22. The reduction from computing LOR
d to computing Ld in Theorem 231201

implies that it suffices to show that that for each d ≥ 2 there exists some αd > 0 such that1202

computing LOR
d (f) up to a factor of (1 + αd) is NP-hard under randomized quasipolynomial1203

Turing reductions.1204

We show this is indeed the case by induction on d. The base case of d = 2 is provided by1205

Corollary 24. Next suppose d ≥ 3 and that computing LOR
d−1(f) up to a factor of (1 + αd−1)1206

is NP-hard under randomized quasipolynomial Turing reductions. Then Theorem 25 implies1207

that there exists an αd > 0 such that computing LOR
d (f) up to a factor of (1 +αd) is NP-hard1208

under quasipolynomial time randomized Turing reductions. J1209

6 Approximating LOR
d−1(f) Using LOR

d (·)1210

In this section, we prove Theorem 25.1211

I Theorem 25. Let d ≥ 3. Let 0 < α < 10−7. Given access to an oracle O that computes1212

LOR
d up to a factor of (1 +α) and given the truth table of a function f : {0, 1}n → {0, 1}, one1213

can compute LOR
d−1(f) up to a (1 +O(α)) factor in randomized quasipolynomial time.1214

Before proving Theorem 25, we state the following lemma that will be an important1215

ingredient in our proof. This lemma essentially shows that we can sample functions whose1216

CNF complexity is within a certain range and whose non-deterministic complexity is very1217

close to its CNF complexity.1218

I Lemma 26. Let γ = 10−4. Let 0 < δ < γ
16 be a parameter such that 1

δ ∈ N. Let n and1219

t be positive integers satisfying n 8
δ ≤ t ≤ 2n. Then there exists a distribution Dn,t,δ of1220

Boolean functions with (n+ n2/δ)-inputs samplable in time quasipolynomial in 2n such that1221

if g ← Dn,t,δ, then with probability 1− oδ(1) all of the following hold1222

1. (1− 4δ)tn2 ≤ LND(g) ≤ LAND
2 (g) ≤ (1 + 4δ)tn2,1223

2. min{LND(g) + LND,γ(g), 2 · LND,.73(g)} ≥ (1 + γ
2 )tn2.1224

In one sentence, Lemma 26 is proved using a counting argument. We defer the prove of1225

Lemma 26 to the end of this section.1226

Assuming Lemma 26 is true, we can prove Theorem 25.1227

Proof of Theorem 25. To be clear, when we say that the oracle O computes a (1+α)-factor1228

approximation to LOR
d , we mean that1229

LOR
d (g) ≤ O(g) ≤ (1 + α) · LOR

d (g)1230
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for all functions g.1231

Next, we note it suffices to show that one can compute LAND
d−1 (f) up to a (1 +O(α)) factor1232

in quasipolynomial time since, as mentioned in Proposition 7, DeMorgan’s laws imply that1233

LOR
d−1(f) = LAND

d−1 (¬f).1234

Let 0 < δ < γ
16 with 1

δ ∈ N be some sufficiently small parameter that can depend on α.1235

Algorithm for the reduction.1236

Given the truth table of a function f : {0, 1}n → {0, 1}, our algorithm for computing1237

an approximation to LAND
d−1 (f) is as follows. First, using brute force, iterate through all1238

AND ◦ AC0
d−2 formulas of size n1024/δ, see if any of them compute f , and output the size of1239

the smallest one computing f if one does.1240

Otherwise, for each i ∈ [22n] and for each positive integer t satisfying n8/δ ≤ t ≤ 2n,1241

sample gi,t ← Dn,t,δ, and set1242

bi,t =
{

1 , if O(f(x) ∧ gi,t(y)) ≥ (1 + γ
16 )tn2

0 , otherwise.
1243

Finally, after we have finished computing bi,t for all i ∈ [22n] and all n8/δ ≤ t ≤ 2n, set1244

t? = max
t
{t : for at least half of i ∈ [22n], bi,t = 1},1245

let i? be a random element of [22n] and output1246

O(f(x) ∧ gi?,t?(y))− t? · n2.1247

This completes our description of the algorithm.1248

Running Time.1249

Next, we check that this algorithm runs in quasipolynomial time. By Proposition 9, the1250

number of formulas of size at most n 1024
δ with n-inputs is bounded by1251

2n
1024
δ log(100n)

1252

and is thus quasipolynomial in N = 2n. Thus, we can iterate through all AND ◦ AC0
d−21253

formulas of size at most n 1024
δ by iterating through all the unrestricted formulas of size n 1024

δ1254

and checking whether each unrestricted formula is an AND ◦ AC0
d−2 formula (by turning1255

repeated gates into a single gate with larger fan-in). Thus, the brute-force part of the1256

algorithm runs in quasipolynomial time.1257

For the remaining part of the algorithm, it is easy to see it runs in quasipolynomial time1258

as long as the truth table of each gi,t is quasipolynomial in the length of the truth table of1259

f . Since from Lemma 26 we know that gi,t takes n+ n2/δ inputs, it follows that the length1260

of the truth table of each gi,t is 2n+n2/δ which is quasipolynomial in 2n, as desired. This1261

completes our analysis of the running time of the algorithm.1262

Correctness.1263

We now prove that the algorithm outputs a (1+O(α)) approximation to LAND
d−1 with probability1264

at least 2/3 when n is sufficiently large. Clearly, brute-force stage of the algorithm ensures1265

that the algorithm outputs the LAND
d−1 (f) exactly when LAND

d−1 (f) ≤ n 1024
δ . Thus, for the rest of1266

the analysis we can assume that LAND
d−1 (f) ≥ n 1024

δ1267
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Conditioning on a likely event.1268

To begin, we will condition on an event that occurs with high probability, which we describe1269

next. For any i ∈ [22n] and any t satisfying n8/δ ≤ t ≤ 2n, we say that gi,t is good if it1270

satisfies all the conditions at the end of Lemma 26, that is, if the following two statements1271

are true:1272

1. (1− 4δ)tn2 ≤ LND(gi,t) ≤ LAND
2 (gi,t) ≤ (1 + 4δ)tn2, and1273

2. min{LND(gi,t) + LND,γ(gi,t), 2 · LND,.73(gi,t)} ≥ (1 + γ
2 )tn2.1274

We will condition on the event E that for each fixed t we have that gi,t is good for at least1275

90% of the i ∈ [22n] and gi?,t? is good. We show that this event occurs with high probability.1276

1277

B Claim 27. E occurs with probability at least 2/3.1278

Proof. We do this by a union bound argument.1279

Fix some t ∈ [2n] satisfying n8/δ ≤ t ≤ 2n. We bound the probability that gi,t is good for1280

less than a .9 fraction of the i ∈ [22n]. Lemma 26 implies that for each fixed i that gi,t is1281

good with probability 1− oδ(1). Thus, since each gi,t is sampled independently, we get by a1282

Chernoff bound that1283

Pr[
∑

i∈[22n]

1gi,t ≤ .9 · 22n] ≤ e−Ωδ(22n).1284

Thus, union bounding over all t ∈ [2n], we get that for each fixed t, gi,t is good for 90%1285

of all i with probability at least1286

1− oδ(1) + 2n · e−Ωδ(22n) = 1− oδ(1).1287

This event also implies that gistar,t? is good with probability at least 90% since i? is chosen1288

at random. Hence, we have that E occurs with probability at least 2/3. C1289

For the remainder of the proof, we assume that E occurs.1290

Lower bounding t?.1291

Next, we work to lower bound the value of t?.1292

B Claim 28. If gi,t is good and γ
8 tn

2 ≤ LAND
d−1 (f) ≤ γ

4 tn
2, then bi,t = 1.1293

Proof of Claim. We wish to use the lower bound that1294

LOR
d (f(x) ∧ gi,t(y)) ≥ LOR

d (gi,t) + LAND
d−1 (f)1295

that is given in Theorem 5. If we could use this lower bound, then we would have that1296

O(f(x) ∧ gi,t(y)) ≥ LOR
d (f(x) ∧ gi,t(y))1297

≥ LOR
d (gi,t) + LAND

d−1 (f)1298

≥ (1− 4δ)tn2 + γ

8 tn
2

1299

≥ (1 + γ

16)tn2
1300
1301

where the first inequality comes from O being a multiplication approximation of LOR
d , the1302

second inequality comes the lower bound in Theorem 5, the third inequality comes from the1303



R. Ilango 35

fact gi,t is good and the hypothesis of the claim, and the last inequality comes from setting δ1304

so that 4 · δ ≤ γ
16 . Thus, since O(f(x) ∧ gi,t(y)) ≥ (1 + γ

16 )tn2, we know that bi,t = 1 (by1305

definition) and the claim is proved.1306

Hence, to prove the claim, we just need to check that the hypotheses in Theorem 5 hold.1307

That is, we need to check that f and g are not constant functions and that1308

min{LND(gi,t) + LND,γ(gi,t), 2 · LND,.73(gi,t)} ≥ LOR
d (gi,t) + LAND

d−1 (f).1309

Since, after the brute force stage of the algorithm, we know that LAND
d−1 (f) ≥ n

1024
δ ,1310

it follows that f is not a constant function. Similarly, since gi,t is good, we know that1311

LND(gi,t) ≥ (1− 4δ)tn2, so g is not constant either.1312

For the last condition, we have that1313

LOR
d (gi,t) + LAND

d−1 (f) ≤ (1 + 4 · δ)tn2 + γ

4 tn
2 ≤ min{LND(gi,t) + LND,γ(gi,t), 2 · LND,.73(gi,t)}1314

where the first inequality comes from property (1) of gi,t being good and the assumption in1315

the claim on LAND
d−1 (f) and the last inequality comes from property (2) of gi,t being good and1316

setting δ so that 4δ ≤ γ/4. C1317

We use Claim 28 to show that t? exists and to lower bound t? in terms of LAND
d−1 (f). In1318

particular, since we know that1319

n
1024
δ ≤ LAND

d−1 (f) ≤ n2n1320

(where the lower bound comes from the brute force stage of the algorithm and the upper1321

bound is the trivial CNF upper bound), it follows that when n is sufficiently large that there1322

exists an integer t satisfying both that1323

n8/δ ≤ t ≤ 2n1324

and that1325

γ

8 tn
2 ≤ LAND

d−1 (f) ≤ γ

4 tn
2.1326

Hence, using Claim 28 and the fact that E occurs, we get that t? exists and LAND
d−1 (f) ≤ γ

4 t
?n2

1327

when n is sufficiently large.1328

Upper bounding t?.1329

On the other hand the following claim implies that t? cannot be too large.1330

B Claim 29. If for some i gi,t is good and bi,t = 1 and n is sufficiently large, then1331

LAND
d−1 (f) ≥ ( γ16 − 5α)tn2.1332

Proof of Claim. Since bi,t = 1, we have that1333

(1 + γ

16)tn2 ≤ O(f(x) ∧ gi,t(y)) ≤ (1 + α)LOR
d (f(x) ∧ gi,t(y)).1334

On the other hand,1335

LOR
d (f(x)∧ gi,t(y)) ≤ LAND

d−1 (f(x)∧ gi,t(y)) ≤ LAND
d−1 (f) + LAND

d−1 (gi,t) ≤ (1 + 4δ)tn2 + LAND
d−1 (f)1336
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where the last inequality comes from property (1) of gi,t being good (note d ≥ 3). Putting1337

these two bounds together, we get that1338

LAND
d−1 (f) ≥ 1

(1 + α) (1 + γ

16)tn2 − (1 + 4δ)tn2
1339

≥ (1− 2α)(1 + γ

16)tn2 − (1 + 4δ)tn2
1340

≥ (1 + γ

16 − 4α)tn2 − (1 + 4δ)tn2
1341

≥ ( γ16 − 4α− 4δ)tn2
1342

≥ ( γ16 − 5α)tn2
1343
1344

where the first inequality comes from 1
1+α ≥ 1− 2α when α ≤ 1, the second inequality comes1345

from γ < 1, and the last inequality comes from assuming that 4δ ≤ α. C1346

Conditioned on the event E occurring, Claim 29 implies that1347

LAND
d−1 (f) ≥ ( γ16 − 5α)n2t?1348

when n is sufficiently large.1349

Putting the bounds on t? together.1350

Putting our bounds together, we have that1351

( γ16 − 5α)n2t? ≤ LAND
d−1 (f) ≤ γ

4 t
?n2

1352

when n is sufficiently large and E occurs. Using these inequalities, we can prove the1353

correctness of our algorithm’s output. First, we show the upper bound. We have1354

O(f(x) ∧ gi?,t?(y))− t?n2 ≤ (1 + α)LOR
d (f(x) ∧ gi?,t?(y))− t?n2

1355

≤ (1 + α)[LAND
d−1 (f) + LAND

d−1 (gi?,t?)]− t?n2
1356

≤ (1 + α)[LAND
d−1 (f) + (1 + 4δ)t?n2]− t?n2

1357

≤ (1 + α)LAND
d−1 (f) + (1 + 2α+ 8δ)t?n2 − t?n2

1358

≤ (1 + α)LAND
d−1 (f) + (2α+ 8δ)t?n2

1359

≤ (1 + α)LAND
d−1 (f) + 2α+ 8δ

γ
16 − 5αLAND

d−1 (f)1360

≤ (1 + α)LAND
d−1 (f) +O(α) · LAND

d−1 (f)1361

≤ (1 +O(α))LAND
d−1 (f)1362

1363

where the third inequality comes from gi?,t? being good, the sixth inequality comes from the1364

lower bound on LAND
d−1 (f), and the seventh inequality comes from setting δ sufficiently small1365

and since α < γ/103.1366

Next, we argue the lower bound on the output. For this we will again make use of1367

Theorem 5 in order to obtain the lower bound1368

LOR
d (f(x) ∧ gi?,t?(y)) ≥ LAND

d−1 (f) + LOR
d (gi?,t?).1369

To do this, we must check that the two hypothesis of Theorem 5 hold. In particular, we know1370

that f is not a constant function (since the brute force stage ensures LAND
d−1 (f) ≥ n1024/δ) and1371
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gi?,t? is not constant (because it is good) and we have that1372

LOR
d (gi?,t?)+LAND

d−1 (f) ≤ (1+4·δ)t?n2+γ

4 t
?n2 ≤ min{LND(gi?,t?)+LND,γ(gi?,t?), 2·LND,.73(gi?,t?)}1373

using that gi?,t? is good, the inequality on LAND
d−1 (f) and setting δ sufficiently small. This1374

means we can indeed apply Theorem 5. We make use of it to derive our lower bound1375

O(f(x) ∧ gi?,t?(y))− t?n2 ≥ LOR
d (f(x) ∧ gi?,t?(y))− t?n2

1376

≥ LAND
d−1 (f) + LOR

d (gi?,t?)− t?n2
1377

≥ LAND
d−1 (f) + (1− 4δ)t?n2 − t?n2

1378

≥ LAND
d−1 (f)− 4δt?n2

1379

≥ (1− 4δ
γ
16 + 5α )LAND

d−1 (f)1380

≥ (1− 2α)LAND
d−1 (f).1381

1382

where the second inequality comes from Theorem 5, the third inequality comes from gi?,t?1383

being good, and the last inequality comes from setting δ sufficiently small.1384

Hence, we have the algorithm outputs (1+O(α)) approximation of LAND
d−1 (f), as desired. J1385

Next, we prove Lemma 26. We note that the functions we use in the proof of this lemma1386

are taken from Lupanov’s construction of asymptotically optimal depth-3 formulas[26]. In1387

particular, one can view our functions as the functions computed by the depth-2 subformulas1388

in Lupanov’s depth-3 formulas.1389

I Lemma 26. Let γ = 10−4. Let 0 < δ < γ
16 be a parameter such that 1

δ ∈ N. Let n and1390

t be positive integers satisfying n 8
δ ≤ t ≤ 2n. Then there exists a distribution Dn,t,δ of1391

Boolean functions with (n+ n2/δ)-inputs samplable in time quasipolynomial in 2n such that1392

if g ← Dn,t,δ, then with probability 1− oδ(1) all of the following hold1393

1. (1− 4δ)tn2 ≤ LND(g) ≤ LAND
2 (g) ≤ (1 + 4δ)tn2,1394

2. min{LND(g) + LND,γ(g), 2 · LND,.73(g)} ≥ (1 + γ
2 )tn2.1395

Proof. Fix some positive integers n and t satisfying n 8
δ ≤ t ≤ 2n. Set m = n

2
δ . Note that1396

t ≥ m4.1397

Defining the distribution.1398

Our distribution Dn,t,δ on Boolean functions will be as follows. For each y ∈ [t], sample1399

Zy ⊆ [m] to be a random subset of [m] where each element of [m] is placed in Zy independently1400

with probability mδ−1. The Boolean function output by the distribution is the function1401

g : {0, 1}n × {0, 1}m → {0, 1}1402

where g(y, z) = 1 if and only if all of the following hold:1403

wt(z) = 1 (recall, wt(z) denotes the number of ones in z),1404

y ∈ [t] (We interpret y as an element of [2n] in the natural way. So, y ∈ [t] if and only if1405

the binary integer represented by y is at most t− 1. Note that t ≤ 2n.), and1406

the jth bit of z is one for some j ∈ Zy.1407

This completes our description of the distribution Dn,t,δ. It is easy to see that one can sample1408

a function from Dn,t,δ in time O(2m·n) which is quasipolynomial in 2n.1409
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Union bounding against a bad event.1410

We now establish that a function g sampled from Dn,t,δ has the desired properties with1411

high probability. To begin, we consider a high probability event involving
∑
y∈[t] |Zy|. Since1412 ∑

y∈[t] |Zy| is the sum of m · t independent Bernoulli random variables with probabilty mδ−1
1413

of being one and m · t ·mδ−1 = n2t, Chernoff bounds imply that1414

tn2(1− δ) ≤
∑
y∈[t]

|Zy| ≤ tn2(1 + δ)1415

with probability at least 1− o(1). Thus, we can union bound over this o(1) failure probability1416

and assume for the remainder of this proof that when n is sufficiently large we have that1417

tn2(1− δ) ≤
∑
y∈[t]

|Zy| ≤ tn2(1 + δ).1418

Upper bounding the complexity of g.1419

Next, we establish the upper bound LAND
2 (g) ≤ (1 + 4δ)n2t. Observe that we can compute g1420

as follows:1421

g(y, z) = 1wt(z)=1 ∧ 1y∈[t] ∧
∧
ỹ∈[t]

(1y 6=ỹ ∨ (
∨
j∈Zỹ

zj))1422

where zj denotes the jth bit of y.1423

The next two claims upper bound the complexity of this formula in pieces.1424

B Claim 30. LAND
2 (1wt(y)=1) ≤ 2m2.1425

Proof. We can compute 1wt(z)=1 by checking if at least one bit of z is one and then checking1426

if for each pair of bits that at least one of them is zero. That is,1427

1wt(z)=1 = (z1 ∨ · · · ∨ zm) ∧
∧

j 6=j′∈[m]

(¬zj ∨ ¬zj′)1428

so LAND
2 (1wt(y)=1) ≤ m+m2/2 ≤ 2m2. C1429

B Claim 31. LAND
2 (1y∈[t]) ≤ (t+ 1)n1430

Proof. Pick the integer k so that 2k−1 < t ≤ 2k. Then1431

1y∈[t] = 1y∈[2k] ∧
∧

ỹ∈[2k]\[t]

1ỹ 6=y.1432

It is easy to see that LAND
2 (1y∈[2k]) ≤ n (you just check that the first n− k bits of y are zero),1433

and since 2k − t ≤ 2t− t = t, we get that1434

LAND
2 (

∧
ỹ∈[2k]\[t]

1ỹ 6=y) ≤ |[2k] \ [t]| · n ≤ tn.1435

C1436

Putting these bounds together, we get that1437

LAND
2 (g) ≤ 2m2 + (t+ 1)n+ t · n+

∑
ỹ∈[t]

|Zỹ|1438

≤ 2m2 + (t+ 1)n+ t · n+ tn2(1 + δ)1439

≤ tn2(1 + 4δ)1440
1441
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when n is sufficiently large (note that n being sufficiently large can be absorbed into the1442

oδ(1) failure probability in the lemma statement) and where the second inequality comes1443

from our previous assumption that1444

tn2(1− δ) ≤
∑
y∈[t]

|Zy| ≤ tn2(1 + δ).1445

Lower bounding the complexity of g.1446

It remains to prove the lower bounds in the lemma statement. To prove these lower bounds,1447

we use the following claim.1448

B Claim 32. Let 0 < ε ≤ 1. With probability 1−oε,δ(1), we have that LND,ε(g) ≥ ε(1−4δ)tn2.1449

Before we prove the claim, we show how we can use it to finish the proof of the lemma. In1450

particular, the claim implies that with probability 1− o(1) all of the following hold1451

LND(g) ≥ (1− 4δ)tn2,1452

LND(g) + LND,γ(g) ≥ (1 + γ)(1− 4δ)tn2, and1453

2 · LND,.73(g) ≥ 2 · (.73)(1− 4δ)tn2.1454

Thus, to prove the lemma we require that both of the following hold1455

(1 + γ)(1− 4δ) ≥ 1 + γ
2 , and1456

2 · (.73)(1− 4δ) ≥ 1 + γ
2 .1457

Hence, the lemma is true since δ ≤ γ/16.1458

It remains to prove the claim.1459

Proof of Claim. We prove this by a union bound argument. Fix any h : {0, 1}n+m → {0, 1}.1460

We bound the probability that h is an ε-one-sided approximation for g. By construction, we1461

have that |g−1(1)| =
∑
y∈[t] |Zy|. Since we have already union bounded against the possibility1462

that
∑
y∈[t] |Zy| < (1− δ)tn2, we know that h computes an ε one-sided approximation of g1463

with probability zero if |h−1(1)| < ε · (1− δ)tn2.1464

On the other hand, suppose that |h−1(1)| ≥ ε(1− δ)tn2. Then, since each value of g is an1465

independent Bernoulli random variable, whose probability of equalling one is at most mδ−1,1466

we get that the probability g outputs one whenever h outputs one is at most1467

(mδ−1)ε(1−δ)tn
2

= m−(1−δ)ε(1−δ)tn2
= 2−(1−δ) 2

δ ε(1−δ)tn
2 logn = O(2− 2

δ (1−3δ)εtn2 logn).1468

In contrast, using Proposition 9, the number of functions computed by a non-deterministic1469

formula size s with m+ n inputs and m+ n non-deterministic inputs is at most1470

2s log(100(m+n)) ≤ 2s log(200m) ≤ 2 2
δ s log(200n).1471

Thus, setting s = ε(1 − 4δ)tn2 we get the number of functions computed by a non-1472

determinstic formula of size s is bounded by1473

2 2
δ ε(1−4δ)tn2 log(200n).1474

Hence, the probability an ε-one-sided approximation of g can be computed by a non-1475

deterministic formula of size at most ε(1− 4δ)tn2 is bounded above by1476

O(2− 2
δ (1−3δ)tn2 logn) · 2 2

δ ε(1−4δ)tn2 log(200n) = oε,δ(1).1477

C1478

J1479
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7 NP Hardness of LOR
21480

After a long line of work that began with Masek [27], Khot and Saket [23] proved near1481

optimal hardness of approximation for minimizing the number of terms in a DNF.1482

I Theorem 33 (Khot and Saket [23]). Given the truth table of a function f : {0, 1}n → {0, 1},1483

determining the minimum number of terms in a DNF for computing f up to a factor of n1−ε
1484

is NP hard under quasipolynomial time Turing reductions for all ε > 0.1485

We will need a version of Khot and Saket’s theorem that proves hardness of minimizing1486

the number of leaves in a DNF (which is our size measure). This follows from an easy1487

reduction.1488

I Corollary 24 (Easy corollary of Khot and Saket [23]). Given the truth table of a function f :1489

{0, 1}n → {0, 1}, determining LOR
2 (f) up to a factor of n1−ε is NP-hard under quasipolynomial1490

time Turing reductions for arbitrarily small ε > 0.1491

Proof. Let ε > 0. We show that, given an oracle O that computes LOR
2 up to a factor of n1−ε

1492

and given the truth table of a function f : {0, 1}n → {0, 1}, one can compute in polynomial1493

time the minimum number of terms in any DNF for f up to a factor of O(n1−ε).1494

The algorithm is as follows. Given the truth table of a function f : {0, 1}n → {0, 1},1495

define f ′ : {0, 1}n × {0, 1}n → {0, 1} by1496

f ′(x, y) = f(x) ∧
∧
i∈[n]

yi1497

where yi index the bits of y. Output O(f ′)
n .1498

It is easy to see that this is a polynomial time reduction, so it remains to argue for1499

correctness. Let q? be the minimum number of terms in a DNF required to compute f . It is1500

easy to see that if f can be computed by a DNF ϕ =
∨
j∈[q?] ϕi with q? terms then f ′ can1501

be computed by a DNF1502

ϕ′ =
∨
j∈[q]

[ϕi ∧ y1 · · · ∧ yn]1503

with at most 2nq? leaves.1504

On the other hand, suppose that LOR
2 (f ′) = s and ϕ′ =

∨
i∈[q′] ϕ

′
i is a DNF for f ′ with s1505

leaves. By the optimality of ϕ′, we know that each ϕ′i must output one on at least one input.1506

It follows that ϕ′i uses at least n literals since it must include y1 ∧ · · · ∧ yn in order to only1507

accept YES instances of f ′. Hence, we have that s ≥ q′n. Therefore, there exists a DNF for1508

f with at most q′ terms by setting the values of y1 = · · · = yn = 1 in ϕ′, so q? ≤ q′ ≤ s/n.1509

Putting these two bounds together, we get that1510

q? ≤ LOR
2 (f ′)
n

≤ 2q?.1511

Therefore, we have that our output O(f ′)
n satisfies the following guarantee1512

q? ≤ LOR
2 (f ′)
n

≤ O(f ′)
n
≤ (2n)1−ε LOR

2 (f ′)
n

≤ O(n1−εq?),1513

as desired. J1514
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8 OR-top to General Reduction1515

In this section we will prove the following theorem.1516

I Theorem 23. Let d ≥ 2 be an integer. Let α ≥ 0. Given access to an oracle O that1517

computes an (1 +α) multiplicative approximation to Ld and given the truth table of a function1518

f : {0, 1}n → {0, 1}, one can compute LOR
d (f) and LAND

d (f) up to a factor of (1 + α)2 in1519

deterministic quasipolynomial time.1520

In our proof we will make use of known depth hierarchy theorems for AC0 formulas.1521

Various versions of these hierarchy theorems suffice for our purposes. We cite the one in [13]1522

since it is clearest from the theorem statement that the depth d upper bound is given by a1523

read once formula.1524

It will be important to us that these results are “explicit.” We say a function family1525

fn : {0, 1}n → {0, 1} is explicit if there is a deterministic algorithm Afn that given the input1526

1n outputs the truth table of fn in time 2O(n). We say a family of formulas ϕn that take1527

n-inputs is explicit if there is a deterministic algorithm A that on input 1n outputs ϕn in1528

time 2O(n).1529

I Theorem 34 (Håstad, Rossman, Servedio and Tan [13]). Let d ≥ 2. There is an explicit1530

function Sipserd that can be computed by an explicit depth-d read once formula, but requires1531

depth-(d− 1) formulas of size 2nΩ(1/d) to compute.1532

A consequence of this hierarchy theorem is that there exist explicit functions that are1533

much easier to compute via a depth-d formula with a top OR gate compared to a top AND1534

gate.1535

I Corollary 35. Let d ≥ 2. There exists an explicit function gn : {0, 1}n → {0, 1} such that1536

LOR
d (gn) ≤ n and LAND

d (gn) ≥ 2nΩ(1/d) .1537

Proof. Our function gn : {0, 1}n → {0, 1} is defined as follows. By Theorem 34, there is1538

an explicit function Sipserd+1 on n-inputs that is computed by an explicit depth-(d + 1)1539

read once formula ϕn. Without loss of generality assume that the top gate of ϕn is an1540

AND gate (if this is not the case, then use ¬Sipserd+1 instead of Sipserd+1). Then we can1541

write ϕn =
∧
i∈[k] ϕ

i
n where each ϕ1

n, . . . , ϕ
k
n are OR ◦ AC0

d−1 formulas that are read once on1542

pairwise disjoint inputs. Furthermore,
∑
i∈[k] |ϕin| = |ϕn| = n.1543

We then let gn : {0, 1}n → {0, 1} be the function computed by1544

gn(x) =
∨
i∈[k]

ϕin(x).1545

By construction, we have that LOR
d (gn) ≤ n.1546

It remains to lower bound LAND
d (gn). Since ϕ1

n, . . . , ϕ
k
n use pairwise disjoint inputs, the1547

direct sum rules in Proposition 6 imply that5
1548

LAND
d (gn) ≥

∑
i∈[k]

LAND
d (ϕin).1549

5 Here we begin abusing notation by writing LAND
d (ϕi

n) to mean LAND
d (hi

n) where hi
n is the function

computed by ϕi
n
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On the other hand, since ϕn =
∧
i∈[k] ϕ

i
n computes Sipserd+1 we have that1550 ∑

i∈[k]

LAND
d (ϕin) ≥ LAND

d (
∧
i∈[k]

ϕin) ≥ Ld(Sipserd+1) ≥ 2n
Ω(1/d)

1551

where the last lower bound comes from Theorem 34. Hence, we can conclude that1552

LAND
d (gn) ≥ 2n

Ω(1/d)
1553

J1554

Now we are ready to prove Theorem 231555

I Theorem 23. Let d ≥ 2 be an integer. Let α ≥ 0. Given access to an oracle O that1556

computes an (1 +α) multiplicative approximation to Ld and given the truth table of a function1557

f : {0, 1}n → {0, 1}, one can compute LOR
d (f) and LAND

d (f) up to a factor of (1 + α)2 in1558

deterministic quasipolynomial time.1559

Proof. By applying DeMorgan’s laws as in Proposition 7, we know that LAND
d (f) = LOR

d (¬f),1560

so it suffices to show how to compute LOR
d (f) in polynomial time given oracle access to Ld.1561

Let m be a parameter we set later. Let gm : {0, 1}m → {0, 1} be the explicit function1562

given in Corollary 35 such that LOR
d (gm) ≤ m and LAND

d (gm) ≥ 2mΩ(1/d) .1563

Our algorithm for computing LOR
d (f) given oracle access to Ld will be as follows. First,1564

using brute force, we iterate through all formulas of size at most m
α on n-inputs and output1565

LOR
d (f) exactly if we find a formula computing f . Otherwise, we output O(f(x) ∨ gm(y)).1566

This completes our description of the algorithm.1567

Next we argue that this gives the desired output. Clearly, if LOR
d (f) ≤ m

α , the output is1568

correct. Thus we assume that LOR
d (f) > m

α . The idea is that the cost of using an top AND1569

gate to compute gm is so high that the any optimal circuit for f(x) ∨ gm(y) must use a top1570

OR gate regardless of what f is doing. Indeed, computing f(x) ∨ gm(y) using a top OR gate,1571

we get that1572

LOR
d (f(x) ∨ gm(y)) = m+ LOR

d (f) ≤ m+ n2n1573

where the equality comes from the direct sum rules in Proposition 6 and the inequality comes1574

from the trivial DNF upper bound. On the other hand1575

LAND
d (f(x) ∨ gm(y)) ≥ LAND

d (gm) ≥ 2m
Ω(1/d)

1576

where the first inequality comes from the direct sum rules in Proposition 6 and the last1577

inequality comes from our the properties of gm.1578

We now set m = nOd(1) such that1579

LAND
d (f(x) ∨ gm(y)) ≥ 2m

Ω(1/d)
≥ 2n

2
.1580

We can then conclude that LOR
d (f(x) ∨ gm(y)) ≤ m+ n2n and LAND

d (f(x) ∨ gm(y)) ≥ 2n2 .1581

Hence we have that1582

Ld(f(x) ∨ gm(y)) = LOR
d (f(x) ∨ gm(y)) = LOR

d (f) +m1583

when n is sufficiently large. Since LOR
d (f) ≥ m

α , we get that1584

LOR
d (f) ≤ Ld(f(x) ∨ gm(y)) ≤ (1 + α)LOR

d (f).1585
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Thus, we can conclude that O(f(x) ∨ gm(y)) gives a (1 + α)2 approximation of LOR
d (f), as1586

desired.1587

Finally, we analyze the running time of this algorithm. The brute force stage of the1588

algorithm takes time roughly1589

2O(mα logn) = 2n
O(1)

1590

and constructing the truth table for the oracle query can also be done in 2nO(1) time. Thus,1591

the algorithm runs in time quasipolynomial in N , as desired. J1592

8.1 An alternate version avoiding the switching lemma.1593

Note to the reader: the remainder of this section is not strictly necessary to read and can1594

safely be skipped.1595

One may ask how necessary “switching lemma” types of lower bounds (such as the one1596

used to prove the depth hierarchy theorem we make use of in Theorem 34) to our reduction.1597

Indeed, Theorem 23 is the only place where we use such lower bounds. However, we can1598

actually get by without using switching lemma style techniques, albeit with a loss in hardness1599

of approximation. We show how to do this in the next proof, which only really makes use of1600

direct sum rules and DeMorgan’s laws.1601

I Theorem 36. Let d ≥ 2. Given access to an oracle computing Ld and the truth table of a1602

function f : {0, 1}n → {0, 1}, one can compute LOR
d (f) and LAND

d (f) in polynomial time.1603

Proof. By applying DeMorgan’s laws as in Proposition 7, we know that LAND
d (f) = LOR

d (¬f),1604

so it suffices just to show how to compute LOR
d (f) in polynomial time given oracle access to1605

Ld.1606

Fix d ≥ 2. We split into two cases. First, we consider the case that for all functions h1607

that1608

LOR
d (h) = Ld(h).1609

(We actually know this case is false by Corollary 35, but we want to avoid using any switching1610

lemma style results in this proof.) In this case, we can clearly get the desired algorithm for1611

computing LOR
d (f) by just outputting Ld(f).1612

For the second case, we know that there exists a function h : {0, 1}m → {0, 1} such that1613

LOR
d (h) 6= Ld(h). Then we must have that LOR

d (h) > LAND
d (h).1614

Given a function f : {0, 1}n → {0, 1}, our algorithm for computing LOR
d (f) is simply to1615

output1616 {
Ld(f) , if Ld(f(x) ∧ h(y)) 6= Ld(f) + Ld(h)
Ld(f(x) ∧ ¬f(y))− Ld(f) , otherwise.

1617

It is easy to see that this algorithm runs in polynomial-time, so we just need to show1618

that the algorithm produces the correct output. We will do this by proving two claims:1619

1. LAND
d (f) = Ld(f) if and only if Ld(f(x) ∧ h(y)) = Ld(f) + Ld(h).1620

2. Lmax
d (f) = Ld(f(x) ∧ ¬f(y))− Ld(f)1621

where we define Lmax
d (f) = max{LOR

d (f), LAND
d (f)}1622

Assuming that (1) and (2) are true, we can prove the correctness of the algorithm as1623

follows.1624
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If LAND
d (f) = Ld(f), then by (1) we have that Ld(f(x) ∧ h(y)) = Ld(f) + Ld(h), so the1625

algorithm will output1626

Ld(f(x) ∧ ¬f(y))− Ld(f) = Lmax
d (f) = LOR

d (f)1627

where the first equality comes from (2) and the last equality is because LAND
d (f) = Ld(f).1628

On the other hand, if LAND
d (f) 6= Ld(f), then by (1) we have that Ld(f(x) ∧ h(y)) 6=1629

Ld(f) + Ld(h), so the algorithm outputs1630

Ld(f) = LOR
d (f)1631

where the equality comes from LAND
d (f) 6= Ld(f).1632

Hence, to prove the correctness of the algorithm, it suffices to prove (1) and (2), which1633

we show in the following claims.1634

B Claim 37. (1) is true. That is, LAND
d (f) = Ld(f) if and only if Ld(f(x) ∧ h(y)) =1635

Ld(f) + Ld(h).1636

Proof. We begin by establishing that LOR
d (f(x) ∧ h(y)) > Ld(f) + Ld(h). Indeed, we have1637

that1638

LOR
d (f(x) ∧ h(y)) ≥ LOR

d (f) + LOR
d (h) > LOR

d (f) + Ld(h) ≥ Ld(f) + Ld(h)1639

where the first inequality comes from the direct sum rules in Proposition 6 and the second1640

inequality comes from the assumption that Ld(h) 6= LOR
d (h).1641

As a consequence, we have that1642

Ld(f(x) ∧ h(y)) = Ld(f) + Ld(h) ⇐⇒ LAND
d (f(x) ∧ h(y)) = Ld(f) + Ld(h).1643

However, we know that1644

LAND
d (f(x) ∧ h(y)) = Ld(f) + Ld(h) ⇐⇒ LAND

d (f) = Ld(f) and LAND
d (h) = Ld(h)1645

⇐⇒ LAND
d (f) = Ld(f)1646

1647

where the first equivalence comes from the direct sum rules in Proposition 6 and the second1648

equivalence comes from the assumption that Ld(h) 6= LOR
d (h).1649

Thus we have established1650

Ld(f(x) ∧ h(y)) = Ld(f) + Ld(h) ⇐⇒ LAND
d (f) = Ld(f)1651

as desired. C1652

B Claim 38. (2) is true. That is, Lmax
d (f) = Ld(f(x) ∧ ¬f(y))− Ld(f).1653

Proof. From Proposition 8 we know that1654

Ld(f(x) ∧ ¬f(y)) = LAND
d (f) + LOR

d (f).1655

Hence, we get that1656

Ld(f(x) ∧ ¬f(y))− Ld(f) = LAND
d (f) + LOR

d (f)− Ld(f) = Lmax
d (f)1657

as desired. C1658

J1659
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9 Gaps in Complexity Between Depths1660

In this section we prove Theorem 2.1661

I Theorem 2 (Proved in Section 9). For all d ≥ 2 there exists a function f : {0, 1}n → {0, 1}1662

such that Ld(f)− Ld+1(f) ≥ 2Ωd(n).1663

The main idea here is to “lift” the 2Ω(n) additive gap known for the case of d = 2 to higher1664

depths, using the lower bound method in Theorem 5. To do this, we will need a stronger1665

version of Lemma 26 that shows the existence of truth tables with the desired properties1666

that are of length polynomial in 2n rather than quasipolynomial. This comes at the cost1667

of having depth-3 near optimal formulas rather than depth-2, which is why we did not use1668

them in our (AC0
d)-MCSP hardness result.1669

Again the inspiration for the functions we use come from Lupanov’s nearly optimal1670

depth-3 construction [26].1671

I Lemma 39. Let n and t be integers where n is a power of two and 1 ≤ t ≤ 2n/n. Then1672

there exists a distribution of functions that takes q-inputs where n ≤ q ≤ O(n) such that if f1673

is sampled from this distribution then with probability 1− o(1) both of the following hold1674

(1− o(1))tn11 ≤ LND(f) ≤ LAND
3 (f) ≤ (1 + o(1))tn11, and1675

min{LND(f) + LND,γ(f), 2 · LND,.73(f)} ≥ (1 + γ/4)tn11 where γ = 10−4.1676

We defer the proof of Lemma 39 (which is essentially a counting argument) to the end of1677

the section. We use this lemma to prove the desired gap result.1678

To start, we prove a weaker version of Theorem 2.1679

I Theorem 40. Let d ≥ 2. There exists a family of functions fn : {0, 1}Θd(n) → {0, 1} such1680

that LOR
d (fn)− LOR

d+1(fn) ≥ 2Ωd(n).1681

Proof. We work by induction on d. Our inductive hypothesis is that there exists a family of1682

functions fn : {0, 1}Θd(n) → {0, 1} such that both of the following hold:1683

1. LOR
d (fn) = 2Ωd(n), and1684

2. LOR
d+1(fn) = (1− Ωd(1))LOR

d (fn).1685

Base Case.1686

For the base case of d = 2, we can let fn : {0, 1}n → {0, 1} be given by the parity function1687

PARITYn. It is a folklore result that1688

LOR
2 (PARITYn) = n2n (using the fact that any subcube with more than one element must1689

contain both YES and NO instances of PARITYn), and1690

LOR
3 (PARITYn) ≤ 2O(

√
n) (by computing PARITYn via a divide and conquer approach)1691

Thus, it is easy to see that PARITYn satisfies the inductive hypothesis.1692

Inductive Step.1693

Now suppose that we have proved the theorem for some d ≥ 2, and we want to prove the1694

d+ 1 case. We will construct a family of functions fn satisfying the inductive hypothesis for1695

depth d+ 1.1696

Let ¬hn : {0, 1}Θd(n) → {0, 1} denote the family of functions satisfying the inductive1697

hypothesis for depth d. Combining the inductive hypothesis with DeMorgan’s laws, we have1698

that1699

1. LAND
d (hn) = 2Ωd(n), and1700

2. LAND
d+1 (hn) = (1− Ωd(1))LAND

d (hn).1701
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We now construct fn (note it suffices to do this when n is sufficiently large). Fix some1702

positive integer n. Let m be a power of two such that n ≤ m ≤ 2n. Using condition (1) on1703

hn and the trivial CNF upper bound, we know that1704

2Ωd(n) ≤ LAND
d (hn) ≤ 2Od(n).1705

Thus, when n is sufficiently large there must exist an integer t such that 1 ≤ t ≤ 2n/n and1706

such that1707

8
γ

LAND
d (hn) ≤ tm11 ≤ 16

γ
LAND
d (hn)1708

where γ = 10−4.1709

Then by Lemma 39, there exists a function g : {0, 1}r → {0, 1} where m ≤ r ≤ Od(n)1710

such that both of the following hold1711

(1− o(1))tm11 ≤ LND(g) ≤ LAND
3 (g) ≤ (1 + o(1))tm11, and1712

min{LND(g) + LND,γ(g), 2 · LND,.73(g)} ≥ (1 + γ/4)tm11.1713

Let fn : {0, 1}Θd(n) × {0, 1}r → {0, 1} be given by fn(x, y) = hn(x) ∧ g(y). Note that fn1714

takes Θd(n) + r = Θd(n) inputs, as desired.1715

One can check that fn satisfies all of the hypotheses of Theorem 5 when n is sufficiently1716

large. (The trickiest condition to verify is:1717

min{LND(g) + LND,γ(g), 2 · LND,.73(g)} ≥ (1 + γ/4)tm11 ≥ LOR
d+1(g) + LAND

d (hn)1718

which follows from the hypotheses on g and the choice of t.) Using Theorem 5, we get the1719

following lower bound on fn1720

LOR
d+1(fn) ≥ LAND

d (hn) + LOR
d+1(g) ≥ LAND

d (hn) + (1− o(1))tm11.1721

Since LAND
d (hn) = 2Ωd(n), this confirms condition (1) of the inductive hypothesis.1722

On the other hand, we can upper bound the complexity of fn by1723

LOR
d+1(fn) ≤ LAND

d (fn) ≤ LAND
d (hn) + LAND

d (g) ≤ LAND
d (hn) + (1 + o(1))tm11 ≤ O(LAND

d (hn))1724

where the last inequality comes from our choice of t.1725

This allows us to confirm condition (2):1726

LOR
d+2(fn) ≤ LAND

d+1 (fn)1727

≤ LAND
d+1 (hn) + LAND

3 (g)1728

≤ LAND
d+1 (hn) + (1 + o(1))tm11

1729

≤ (1− Ωd(1))LAND
d (hn) + (1 + o(1))tm11

1730

≤ LOR
d+1(fn) + o(tm11)− Ωd(LAND

d (hn))1731

≤ LOR
d+1(fn)− Ωd(LAND

d (hn))1732

≤ (1− Ωd(1))LOR
d+1(fn).1733

1734

where the last four equalities are justified (in order) by:1735

condition (2) on hn,1736

the our lower bound on LOR
d+1(fn),1737

our choice of t, and1738

our upper bound on LOR
d+1(fn).1739

J1740
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We can now prove the full theorem.1741

I Theorem 2 (Proved in Section 9). For all d ≥ 2 there exists a function f : {0, 1}n → {0, 1}1742

such that Ld(f)− Ld+1(f) ≥ 2Ωd(n).1743

Proof of Theorem 2. Fix some d. Let Fn : {0, 1}Θd(n) → {0, 1} be the function guaranteed1744

by Theorem 40 satisfying LOR
d (Fn)− LOR

d+1(Fn) ≥ 2Ωd(n).1745

Let M ⊆ N be the set containing all the input lengths of the functions in the family Fn,1746

that is,1747

M = {m : there is an n such that Fn takes m inputs}.1748

Next, define the function m? : N→ N by1749

m?(n) =
{

0 , if {1, . . . , bn/2c} ∩M = ∅
max({1, . . . , bn/2c} ∩M) , otherwise

1750

We now define Fn : {0, 1}n → {0, 1} by1751

Fn(x) =
{

0 , if mn = 0
Fm?(n)(x1, . . . , xm?(n)) ∧ ¬Fm?(n)(xm?(n)+1, . . . , x2m?(n)) , otherwise

1752

We will use the following claim about the asymptotic behavior of the m? function.1753

B Claim 41. m?(n) = Ω(n)1754

Proof. This follows the from the fact that Fn takes Θd(n) inputs. C1755

We now use this claim to complete the proof. In particular, when n is sufficiently large,1756

we have that1757

Ld+1(Fn)− Ld+2(Fn)1758

≥Ld+1(Hm?(n)(x1, . . . , xm?(n)) ∧ ¬Hm(xm?(n)+1, . . . , x2m?(n)))−1759

− Ld+2(Hm?(n)(x1, . . . , xm?(n)) ∧ ¬Hm(xm?(n)+1, . . . , x2m?(n)))1760

=LOR
d+1(Hm?(n)) + LAND

d+1 (Hm?(n))− LOR
d+2(Hm?(n)) + LAND

d+2 (Hm?(n))1761

≥LOR
d+1(Hm?(n))− LOR

d+2(Hm?(n))1762

≥2Ωd(m?(n)
1763

≥2Ωd(n)
1764
1765

where justifications for these equalities/inequalities are (in order):1766

1. follows from the definition of Fn, n being sufficiently large, and M being non-empty1767

2. follows from the properties of direct sums of functions with their negations proved in1768

Proposition 81769

3. follows from the quantity LAND
d+1 (Hm?(n))− LAND

d+2 (Hm?(n)) being non-negative1770

4. follows the work above on Hm1771

5. follows from m?(n) = Ω(n)1772

J1773

We end the section by proving Lemma 39.1774

I Lemma 39. Let n and t be integers where n is a power of two and 1 ≤ t ≤ 2n/n. Then1775

there exists a distribution of functions that takes q-inputs where n ≤ q ≤ O(n) such that if f1776

is sampled from this distribution then with probability 1− o(1) both of the following hold1777
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(1− o(1))tn11 ≤ LND(f) ≤ LAND
3 (f) ≤ (1 + o(1))tn11, and1778

min{LND(f) + LND,γ(f), 2 · LND,.73(f)} ≥ (1 + γ/4)tn11 where γ = 10−4.1779

Proof. Set m = 10 logn and set ` to be an integer satisfying6 n1−1/ log(log(n)) ≤ 22` ≤1780

4n1−1/ log(log(n)). Since n is a power of two, we can partition {0, 1}n into Hamming balls of1781

radius one B1, . . . , B 2n
n

by the Hamming code. Let c1, . . . , c 2n
n ∈ {0, 1}n be the centers of1782

these balls.1783

We also define an encoding σ of the elements in the set X =
⋃
i∈[t]Bi. In particular, let1784

σ : X → [t]× [n] be the bijection given by1785

σ(x) = (i, j) where x = ci ⊕ ej1786

where ej = 0j−110n−j−1.1787

Definition of f1788

We define the function f : {0, 1}n × {0, 1}m × {0, 1}` as follows. For each i ∈ [t], j ∈ [n] and1789

y ∈ {0, 1}m, let gi,j,y : {0, 1}` → {0, 1} be uniformly random function. Then we define f by1790

f(x, y, z) =
{

0 , if x 6∈ X
gi,j,y(z) , if x ∈ X and σ(x) = (i, j)

.1791

We make a few notes about f before we proceed. First, f takes n+m+ ` = O(n) inputs.1792

Next, let I = X × {0, 1}m × {0, 1}`. Note that f restricted to I is a uniformly random1793

function, and that f is always zero outside of I. It will also be useful to know that1794

|I| = t · n · 2m · 2` ≥ tn11 · (1− 1/ log(log(n))) log(n).1795

Upper bounding the complexity of f1796

To begin, we prove an upper bound on the complexity of f .1797

B Claim 42.

LAND
3 (f) ≤ (1 + o(1))tn11

1798

Proof. Observe that one can compute f via the following AND ◦ OR ◦ AND formula1799

(
∨
i∈[t]

1x∈Bi) ∧
∧

g̃:{0,1}`→{0,1},
i∈[t]

[1x 6∈Bi ∨ g̃(z) ∨
∨

ỹ∈{0,1}m
[1ỹ=y ∧

∧
j∈[n]:gi,j,ỹ=g̃

(xj = (ci)j)]]1800

We upper bound the number of leaves in this formula. One can compute 1x∈Bi by1801

checking if at least one bit of x differs from ci and that for every pair of bits from y at least1802

one agrees with the corresponding bit in ci. Using this strategy, we get that1803

L2(1x∈Bi) = L2(1x6∈Bi) ≤ 2n2.1804

By the trivial DNF upper bound, we get that LOR
2 (g̃) ≤ `2`. Finally,1805

LAND
1 (1ỹ=y ∧

∧
j∈[n]:gi,j,ỹ=g̃

(xj = (ci)j) ≤ m+
∑

j∈[n]:gi,j,ỹ=g̃

11806

6 If n is small, it may not be possible to set ` in this way, but this possibility can just be absorbed into
the o(1) failure probability in the lemma statement.
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Putting these all together, we get the upper bound1807

LAND
3 (f) ≤ 2tn2 + t22`(2n2 + `2` +m2m) +

∑
g̃,i,ỹ

∑
j∈[n]:gi,j,ỹ=g̃

11808

≤ 2tn2 + t22`(2n2 + `2` +m2m) + tn2m1809

≤ 2tn2 + 4tn1−1/ log(log(n))(2n2 + n+ 10n10 logn) + tn11
1810

≤ (1 + o(1))tn11
1811
1812

C1813

Lower bounding the complexity of f1814

We now argue the lower bounds on f . All of these lower bounds are proved via a counting1815

argument. In particular, we will use that the number of nondeterministic formulas of size s1816

with (n+m+ `)-inputs and (n+m+ `) nondeterministic inputs is bounded by1817

2s log(100(n+m+`)) ≤ 2s log(200n).1818

for sufficiently large n by Proposition 9.1819

B Claim 43. With probability 1− o(1),1820

LND(f) ≥ (1− o(1))tn11
1821

Proof. We use a union bound argument. Since f is a uniformly random function on I, the1822

probability any fixed function h equals f is at most1823

2−|I| ≤ 2−tn
11·(1−1/ log(log(n))) log(n).1824

The claim follows by combining this probability bound with the 2s log(200n) bound on the1825

number of non-deterministic formulas of size s. C1826

B Claim 44. With probability 1− o(1),1827

LND(f) + LND,γ(f) ≥ (1 + γ/4)tn11
1828

Proof. In the previous claim, we proved that LND(f) ≥ (1− o(1))tn11. Thus, we now just1829

need to lower bound LND,γ(f). We again work via a union bound argument.1830

The probability there exists any function h with |h−1(1)| < γ (1−1/ log(log(n)))|I|
2 that1831

computes a γ one-sided approximation of f is o(1). This is because f is a uniformly random1832

function on I and is zero outside of I, so by a Chernoff bound, we have that f has at least1833
(1−1/ log(log(n)))|I|

2 YES inputs with probability 1− o(1).1834

On the other hand, if |h−1(1)| ≥ γ (1−1/ log(log(n)))|I|
2 , then the probability some fixed1835

function h computes a γ one-sided approximation to f is at most1836

2−γ
(1−1/ log(log(n)))|I|

2 ≤ 2−γ(1−1/ log(log(n)))2tn11 log(n)/2
1837

since h needs to have at least γ(1−1/ log(log(n)))|I|
2 YES instances to have any hope of computing1838

a γ one-sided approximation of f and all these YES instances of h must be YES instances of1839

f .1840

By combining this probability bound with the 2s log(200n) bound on the number of non-1841

deterministic formulas of size s and (n+m+ `)-inputs, we get that LND,γ(f) ≥ (γ2 − o(1))tn11
1842

with probability 1− o(1). C1843



50 Versions of MCSP are Hard

B Claim 45. With probability 1− o(1),1844

2 · LND,.73(f) ≥ (1 + γ/4)tn11
1845

Proof. We again use a union bound. Fix some function h : {0, 1}n × {0, 1}m × {0, 1}`. We1846

bound the probability that h computes a .73 one-sided approximation of f .1847

Set k = |h−1(1)|. For h to be a .73 one-sided approximation of f , two events must occur:1848

1. h−1(1) ⊆ f−1(1)1849

2. |f−1(1)| ≤ k/.731850

We bound the probability that events (1) and (2) both occur. Since f is a uniformly1851

random function on I and zero elsewhere, the probability that event (1) occurs is exactly1852

2−k.1853

Next, we work to bound the probability that event (2) occurs given that event (1) occurs.1854

Event (2) is equivalent to saying that
∑

(x,y,z)∈I [1f(x,y,z)=1] ≤ k/.73. If event (1) occurs,1855

then1856 ∑
(x,y,z)∈I

[1f(x,y,z)=1] = k +
∑

(x,y,z)∈I\Yh

[1f(x,y,z)=1].1857

Since
∑

(x,y,z)∈I\Yh [1f(x,y,z)=1] is the sum of |I|−k independent binomial random variables1858

with expectation .5, it follows from a Chernoff bound that the probability that event (2)1859

occurs given event (1) occurs is1860

Pr[k +
∑

x∈X\Yh

1f(x)=1 ≤ k/.73] ≤ e−D(q||.5)·(|I|−k)
1861

where D is the KL divergence function and1862

q = k(1/.73− 1)
|I| − k

= α · (1/.73− 1)
1− α1863

where α = k/|I|. Note that when q ≥ 1, this bound does not make sense, in which case we1864

adopt the convention that e−D(q||.5) = 1.1865

Hence, we have that the probability that h computes a .73 one-sided approximation of f1866

is at most1867

2−α·|I| · e−D(α·(1/.73−1)
1−α ||.5)·(1−α)|I|.1868

Using some calculus, we get that this quantity is at most 2−.501|I|, which is upper bounded1869

by1870

2−.501t·n11·(1−1/ log(log(n))) log(n).1871

Combining this upper bound on the probability that h computes a .73 one-sided approx-1872

imation of f with the 2s log(200n) bound on the number of non-deterministic formulas of size1873

s and (n+m+ `)-inputs, we get that1874

LND,.73(f) ≥ (.501− o(1))tn11
1875

with probability 1− o(1).1876

Therefore,1877

2LND,.73(f) ≥ (1.02− o(1))tn11 ≥ (1 + γ/4)tn11
1878

with probability 1− o(1). C1879

Combining the last three claims with a union bound completes our proof of this lemma. J1880
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