
The Minimum Formula Size Problem is (ETH)1

Hard2

Rahul Ilango !3

Massachusetts Institute of Technology, USA4

Abstract5

A longstanding open question is whether the Minimum Circuit Size Problem (MCSP) is NP-complete.6

In fact, even determining whether MCSP has a search-to-decision reduction has been open for over7

twenty years.8

We show that, under the Exponential Time Hypothesis, the Minimum (De Morgan) Formula9

Size Problem, MFSP, is not in P. Building on this, we show that MFSP has a polynomial-time10

(exact) search-to-decision reduction, a result that does not relativize. Our main lemma relates the11

formula complexity of a partial function with the formula complexity of an associated total function12

and is proved using the “leaf weighting” technique of Buchfuhrer and Umans.13

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-14

tation → Problems, reductions and completeness15

Keywords and phrases Minimum Formula Size Problem, Minimum Circuit Size Problem, Boolean16

Formulas, Meta-Complexity17

Funding During parts of this work, the author was supported by an Akamai Presidential Fellowship18

and by NSF Grants CCF-1741615 and CCF-1909429.19

Acknowledgements We thank Eric Allender, Abhishek Bhrushundi, Aditi Dudeja, Igor Oliveira,20

Hanlin Ren, Rahul Santhanam, and Ryan Williams for useful discussions on this work. In particular,21

Rahul Santhanam first pointed out to us the question of whether one could show that MFSP is not22

in P under ETH.23

1 Introduction24

The Minimum Circuit Size Problem (MCSP) asks one to determine whether a given function f25

(represented by its truth table) has a circuit of a given size s. While it is easy to see that this26

problem is in NP1, it is a longstanding open question whether MCSP is NP-complete. Indeed,27

research on the intractability of MCSP dates back at least to the 1950s (see Traktenbrot [39]28

for a historical survey), and Levin actually delayed publishing his results on the theory of29

NP-completeness, in part because he hoped to show MCSP is NP-complete [24].30

Interest in MCSP is further motivated by a growing number of intriguing connections31

between MCSP and areas such as pseudorandomness [30, 38], cryptography [25, 38], learning32

theory [7], circuit complexity [35, 22], proof complexity [34], and average-case complexity33

[12]2.34

1.1 How Hard is MCSP?35

The main motivation of our paper is to further understand the hardness of MCSP and its36

variants. Empirically, MCSP seems to be an intractable problem. Indeed, we do not know37

1 All functions f : {0, 1}n → {0, 1} have a circuit C of size 2nn (the naive DNF), so we can assume
s ≤ 2nn. Thus, one can non-deterministically guess a circuit of size at most s and check if it computes
f by evaluating it on all 2n inputs. The truth table of f has length 2n, so verifying that C computes f
can be done in polynomial-time.

2 These citations are not meant to be exhaustive. See Allender’s survey [1] for a more complete overview.

mailto:rilango@mit.edu

2 The Minimum Formula Size Problem is (ETH) Hard

any algorithm for solving MCSP better than brute-force search. On the other hand, so far38

the intractability of MCSP (i.e. MCSP ̸∈ P) can only be based on cryptographic assumptions.39

For example, Kabanets and Cai [22] show that MCSP ̸∈ P if one-way functions exist, and40

Allender and Das [2] prove that MCSP is hard for the cryptographically important class41

Statistical Zero Knowledge (SZK)3.42

Ideally, one would be able to prove MCSP is NP-complete. Besides characterizing the43

complexity of a natural optimization problem, this would also extend many of the intriguing44

properties known for MCSP to NP. For example, Hirahara [12] shows that if a certain45

approximation to MCSP is NP-complete, then NP has a worst-case to average-case reduction,46

resolving a longstanding open question in average-case complexity.47

Despite this significant motivation, a proof that MCSP is NP-complete (or, conversely,48

evidence that it is unlikely to be NP-complete) remains elusive. Researchers have, however,49

discovered significant technical barriers to showing that MCSP is NP-hard [22, 30, 15, 37, 14].50

These technical barriers do not suggest that MCSP is or is not likely NP-hard, they just imply51

that proving NP-hardness would be difficult. For example, Murray and Williams [30] show52

that if MCSP is NP-hard under polynomial-time many-one reductions, then EXP ≠ ZPP.53

Note that EXP ̸= ZPP is a consequence we believe but seems difficult to show. At heart,54

these technical barriers boil down to the following intuition4: any proof of hardness for55

MCSP implicitly shows how to “efficiently generate” intractable NO instances for MCSP, but56

intractable NO instances of MCSP correspond to functions that require large circuits, and57

we do not know how to produce explicit hard functions.58

This raises a natural question: is the difficulty of showing that MCSP is, say, NP-complete59

primarily because of a lack of techniques (in particular, a lack of circuit lower bounds) or is60

it because it is actually just false? Could it be that MCSP is a hard problem, but just not61

an NP-hard problem? In support of the latter possibility, Allender and Hirahara [4] show62

that, for very large approximation factors, approximating MCSP is not NP-complete under a63

cryptographic assumption.64

Motivated by the question of whether we should expect MCSP to be NP-complete,65

Kabanets and Cai [22] proposed an intermediate task over two decades ago: Does MCSP66

have a polynomial-time search-to-decision reduction? All NP-complete problems have a67

search-to-decision reduction (because SAT has one), so finding a search-to-decision reduction68

is a necessary step to showing that MCSP is NP-hard.69

Over two decades since Kabanets and Cai raised the question, the problem is still70

wide open. Carmosino, Impagliazzo, Kabanets and Kolokolova [7] proved an “approximate”71

search-to-decision reduction (where instead of outputting an optimal circuit, you output72

an approximately optimal circuit that computes the function on most of its inputs), and73

Hirahara [12] and Santhanam [38] prove further extensions of this result. But it is still open74

to refute the possibility that the decision version of MCSP can be solved in, say, linear-time75

and the search version requires exponential-time. Recently, Ren and Santhanam [36] gave a76

partial explanation for this: there is a relativized world where the search problem requires77

nearly exponential time but the decision version is in linear-time. As a result, proving a78

polynomial-time search-to-decision reduction for MCSP requires non-relativizing techniques.79

Given the above discussion, one may feel somewhat pessimistic about the possibility80

of proving NP-hardness of MCSP, at least without a major breakthrough. Luckily, the81

3 We view this as a cryptographic hardness result since SZK ̸⊆ BPP implies auxiliary input one-way
functions exist [33].

4 Actually, [14] does not follow this intuition.

R. Ilango 3

aforementioned technical barriers against proving NP-hardness disappear if one relaxes82

the notion of reduction from, say, polynomial-time reductions to, say, subexponential-time83

reductions. In particular, we already know functions that require linear-sized circuits (e.g.84

any function that depends on all of its inputs), and the brute-force algorithm for solving85

MCSP on functions with linear-sized5 circuits requires superpolynomial-time. As a result,86

one could hope to show that MCSP is not in P under, say, the Exponential Time Hypothesis87

(ETH) by utilizing existing lower bound techniques. Indeed, we conjecture that this is the88

case.89

▶ Conjecture 1. If ETH is true, then solving MCSP on functions f : {0, 1}n → {0, 1} with90

a size threshold s ≤ O(n) is not in P.91

Ilango [18] recently showed the above conjecture is true for Partial-MCSP, the partial function92

version of MCSP, where instead of being provided with a truth table T of a total function93

(i.e. T ∈ {0, 1}2n), T is the truth table of a partial function (T ∈ {0, 1, ⋆}2n). Therefore,94

“all one needs to do” to prove Conjecture 1 is give a reduction from Partial-MCSP to MCSP.95

Intriguingly, such a reduction is known for some restricted circuits classes such as DNFs96

[9, 13].6 One of our main results is giving such a reduction for formulas.97

1.2 The Minimum Formula Size Problem98

Our results focus on the formula version of MCSP, the Minimum Formula Size Problem99

(MFSP). Formally, MFSP is the problem of100

Given: the truth table T ∈ {0, 1}2n of a function f : {0, 1}n → {0, 1} and a positive101

integer s102

Determine: if there is a De Morgan formula with at most s leaves that computes f .103

Our convention is to let N = 2n denote the length of the truth table and let n denote the104

number of inputs to f .105

We remark that we have defined MFSP using the model of De Morgan formulas (i.e.106

formulas with AND, OR, and NOT gates). This is the usual notion of formulas, however, we107

note that this choice will be important for our results. We discuss this in more detail when108

we present our results in Section 1.3.109

Our understanding of MFSP is in a similar state as our understanding of MCSP. We110

know that neither problem can be in P under various cryptographic assumptions, like the111

intractability of factoring Blum integers [5, 22, 35]. We also know that both MCSP and112

MFSP are not in AC0[⊕] [11]. Finally, we know that the partial function versions of both113

MFSP and MCSP are not in P under ETH [18]. Note: the discussion in [18] focuses on the114

partial function version of MCSP, however, [18] notes that proof also shows that the result115

in the case of formulas (in fact even in the case of read-once formulas!). This theorem will be116

crucial for our results.117

There are some results, however, that are not known to hold for both MCSP and MFSP.118

While Allender and Das [2] prove MCSP is be hard for SZK, SZK-hardness is still open for119

MFSP. Also, [17] shows a better than brute-force search-to-decision reduction for MFSP (it120

runs in time 2.67N), while such a reduction is not known for MCSP.121

5 By linear, we mean linear in the number of inputs, not the length of the truth table.
6 We cite [9] here, but this observation for DNFs was first made by Gimpel, and Gimpel’s result is

described in [9].

4 The Minimum Formula Size Problem is (ETH) Hard

1.3 Results and Discussion122

Our main technical contribution is showing a relationship between the formula complexity123

of an arbitrary partial function γ and the formula complexity of a related total function124

Extend[γ, s]. In order to state this more formally, we introduce some notation. Let γ :125

{0, 1}n → {0, 1, ⋆} be a partial function. Let g⋆ : {0, 1}n → {0, 1} be the total function that126

outputs 1 on input x if and only if γ(x) = ⋆. Finally, let L(γ) denote the size of the smallest127

formula that computes a total function that agrees with γ.128

Our main technical lemma is as follows.129

▶ Lemma 2 (Informal version of Lemma 9). Let γ : {0, 1}n → {0, 1, ⋆}. If s ≥ min{L(γ), L(g⋆)},130

then131

L(Extend[γ, s]) = L(γ) + L(g⋆) + 2s,132

where Extend[γ, s] : {0, 1}n × {0, 1}2s → {0, 1} is some total function that depends on γ.133

Note that Extend[γ, s] and g⋆ are both total functions. As a result, one could use134

Lemma 2 to compute the formula complexity of a partial function γ : {0, 1}n → {0, 1, ⋆}135

in time 2O(s+n), using an oracle to MFSP, if one could somehow correctly guess a value136

of s ≥ min{L(γ), L(g⋆)}. We remark that the quantity min{L(γ), L(g⋆)} seems somewhat137

strange, but it arises naturally in the proof and that the structure of this upper bound turns138

out to be crucial for our results.139

One of the main ideas we use to prove Lemma 2 is the “leaf weighting” technique of140

Buchfuhrer and Umans [6], who use the technique to show that the Σ2P version of MFSP (i.e.141

the problem of given a formula φ and a size threshold s, determining if there exists a formula142

of size at most s computing the same function as φ) is hard for Σ2P. The leaf weighting143

technique allows one to give a weight k to an input variable z by replacing it with an OR144

of k new inputs z1, . . . , zk. Buchfuhrer and Umans show that this construction effectively145

forces that any formula that wants to read z to pay for k leaves instead of just one. In our146

construction of Extend[γ, s], certain inputs are given weight s and if s ≥ min{L(γ), L(g⋆)},147

we show that those inputs can appear at most once in any optimal formula for Extend[γ, s].148

This constrains any optimal formula enough to prove the lemma.149

We note that using the leaf weighting technique is extremely expensive, as even adding150

just one extra variable (i.e. increasing the weight of a variable by one) doubles the total151

size of the truth table. As a result, in order to get efficient reductions (in our case, one152

subexponential-time reduction and one polynomial-time reduction) one needs to be rather153

thrifty in applying leaf weighting. Indeed, it is particularly surprising that leaf weighting154

is useful at all (let alone crucially important) in our proof that there is a polynomial-time155

search-to-decision reduction for MFSP.156

We now discuss how we use Lemma 2 to prove our two main results. As we mentioned157

previously, [18] showed that the partial function version of MCSP is hard under ETH. As158

noted in [18], the proof also shows that the partial function version of MFSP is hard under159

ETH. In fact this hardness result applies when one is promised that L(γ) ≤ 10n.160

▶ Theorem 3 ([18]). Under ETH, no deterministic algorithm can compute whether L(γ) = n161

in time No(log log N), even under the promise that L(γ) ≤ 10n.162

On the other hand, we can use Lemma 2 to compute L(γ) in time 2O(n) = poly(N) with163

an oracle to MFSP if we are promised that L(γ) = O(n). Note that, in this case, we are164

applying Lemma 2 with the L(γ) upper bound on the quantity min{L(γ), L(g⋆)}.165

Thus, we get the following theorem.166

R. Ilango 5

▶ Theorem 4 (Also Corollary 18). Assume ETH is true. Then no deterministic algorithm167

solves MFSP in time No(log log N).168

In fact the above hardness result holds even assuming the size parameter s is restricted169

to be at most O(n10).7 In comparison, the brute force algorithm runs in time at most170

NO(log10 log n) on these type of instances, so our (conditional) lower bound is optimal up171

to a constant power in the exponent. This is interesting from the perspective of recent172

hardness magnification results [8, 31, 32, 29, 26], which show that weak lower bounds against173

MCSP-like problems with small size thresholds imply strong lower bounds. For example,174

implicit in McKay, Murray, and Williams [29] is the result that if MFSP with size parameter175

restricted to being s ≤ O(n10) does not have a circuit of size n · poly logn, then NP does176

not have polynomial-sized circuits. Our result proves a partial converse. If MFSP with177

size parameter restricted to being s ≤ O(n10) has a circuit of size No(log log N), then the178

non-uniform version of ETH is false.179

Our second main result is a polynomial-time search-to-decision reduction for MFSP.180

▶ Theorem 5. Given an oracle to MFSP and the truth table of a Boolean function f , one181

can find an optimal formula for f in deterministic polynomial-time.182

At a high-level, our algorithm is very intuitive. It works by combining the ideas used183

in the “better than brute-force” search-to-decision reduction in [17] with Lemma 2. In184

particular, given any “non-trivial” total function f : {0, 1}n → {0, 1}, we show how, using an185

oracle to MFSP, one can efficiently find functions g, h : {0, 1}n → {0, 1} such that there is an186

optimal formula for f where the top two subformulas feeding into the output gate compute g187

and h respectively. We call such a (g, h) pair an optimal decomposition of f . By repeatedly188

finding optimal decompositions, one can recursively build an optimal formula for f .189

Our method for finding an optimal decomposition (g, h) is to construct a partial function190

OrSelect[f, γ, ζ] such that if γ, ζ : {0, 1}n → {0, 1, ⋆} are partial functions satisfying a certain191

condition, then the formula complexity of OrSelect[f, γ, ζ] is small if and only if there is an192

optimal decomposition (g, h) such that g agrees with γ and h agrees with ζ. Since Lemma 2193

gives us a way of calculating the formula complexity of the partial function OrSelect[f, γ, ζ]194

using an oracle to MFSP, this allows us to find g and h by building them up bit-by-bit from195

γ and ζ. While this approach is quite intuitive, it runs into a serious problem: applying196

Lemma 2 to convert partial function queries into total function queries is very expensive. In197

general, it uses exponential-time. In order to implement this procedure in polynomial-time,198

it is critical to take a more fine-grained approach: using the upper bound of L(g⋆) on the199

quantity min{L(γ), L(g⋆)} in the statement of Lemma 2 and carefully working to maintain200

that L(g⋆) always stays small (at most O(n)).201

Intriguingly, this result does not relativize. Santhanam and Ren [36] show that there is202

an oracle relative to which MCSP can be solved in deterministic linear time, but the search203

version of MCSP requires deterministic time 2Ω(N/ log N). Their proof also shows the same204

oracle separation for MFSP. As a result, we can conclude that our search-to-decision reduction205

does not relativize. This relativization barrier means that any polynomial-time search-to-206

decision reduction for MFSP must make significant use of properties of the underlying gate207

set. Our reduction does this, as our techniques rely heavily on the underlying gate set being208

AND, OR, and NOT. Indeed, it is not even clear whether our results extend to the B2 basis209

7 The reason why we get O(n10) here instead of O(n) is because we can only bound L(g⋆) = O(n10) on
the instances produced in Theorem 3.

6 The Minimum Formula Size Problem is (ETH) Hard

consisting of all Boolean functions from two bits to one!8210

1.4 Further Related Work211

While it is beyond the scope of this work to give an exhaustive review of the literature212

on MCSP, there are several related works that we have not yet discussed that are worth213

mentioning.214

One can view our hardness result for MFSP as fitting in a general line of work of showing215

hardness of MCSP for restricted circuit classes. Masek [28] shows that the DNF version216

of MCSP is NP-hard, and a long line of work [9, 40, 3, 10, 23] culminates in near-optimal217

hardness of approximation for the DNF version. Hirahara, Oliveira, and Santhanam [13]218

extend Masek’s result to show NP-hardness for the version of MCSP for DNF circuits with219

parity gates at the bottom. Finally, [18] shows that the constant depth formula version of220

MCSP is NP-hard (under quasipolynomial-time randomized reductions).221

In the realm of general circuits, the conditional version of MCSP and the multi-output222

version of MCSP are also both known to be NP-hard under randomized polynomial-time223

reductions [16, 19].224

2 Preliminaries225

If n is a positive integer, let [n] denote the set {1, . . . , n}. Let ORn : {0, 1}n → {0, 1} denote226

the OR function on n inputs.227

Partial, Total, and Monotone Boolean Functions. A (total) Boolean function is a function228

g : {0, 1}n → {0, 1}. A partial Boolean function is a function γ : {0, 1}n → {0, 1, ⋆}. We229

say g : {0, 1}n → {0, 1} agrees with γ : {0, 1}n → {0, 1, ⋆} if g(x) = γ(x) for all x satisfying230

γ(x) ∈ {0, 1}. We generally use Greek letters for partial functions and Roman letters for231

total functions (though there are some exceptions).232

A monotone Boolean function is a Boolean function f : {0, 1}n → {0, 1} with the following233

property: for all X,Y ⊆ [n] with X ⊆ Y we have that f(x) ≤ f(y) (where x, y ∈ {0, 1}n are234

the Boolean strings whose i’th bits are one if and only if i ∈ X or i ∈ Y respectively). Note235

that the OR function and the AND function are monotone. Also note that compositions of236

monotone functions are also monotone. (In particular, this means that any Boolean circuit or237

formula that uses only AND and OR gates — and does not use NOT gates — must compute238

a monotone Boolean function).239

De Morgan Formulas. In this paper, we will consider the model of De Morgan formulas,240

i.e. rooted binary trees whose internal nodes are labeled by AND and OR gates and whose241

leaves are labeled by elements from the set {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}.242

The size, denoted |φ|, of a formula φ is the total number of leaves in the underlying tree243

of φ that are not labeled by either 0 or 1.9 The formula complexity of a (total) Boolean244

function f , denoted L(f), is the minimum size of any formula computing f . Similarly, if245

γ : {0, 1}n → {0, 1, ⋆} is a partial Boolean function, let L(γ) be the minimum value of L(g)246

over all g : {0, 1}n → {0, 1} that agree with γ.247

8 Our suspicion is that one can extend our results to the B2 basis, but this seems to require, at the very
least, significantly more case analysis.

9 The reason we can ignore leaves labelled by constants is that a gate elimination argument shows that
such leaves can always be removed whenever φ computes a non-constant function.

R. Ilango 7

We will make use of the fact that integer comparison can be implemented by linear-sized248

formulas.249

▶ Proposition 6 (Small formulas for integer comparison). Fix an arbitrary integer a and an250

input length n ≥ 1. Let GEqa : {0, 1}n → {0, 1} be the function given by GEqa(x) = 1 if and251

only if x ≥ a when x is interpreted as an integer in binary. Then L(GEqa(x)) ≤ n.252

Proof. If a ≥ 2n or a ≤ 0, then GEqa is the constant zero function or constant one function253

respectively, so for the remainder of the proof we assume that 0 < a < 2n.254

We work by induction on n. If n = 1, then 0 < a < 2, so a = 1, so GEqa(x) = x, and the255

proposition clearly holds.256

Now suppose n > 1. Since 0 < a < 2n, let y ∈ {0, 1}n be the n-bit binary representation257

of a. Let x1, . . . , xn and y1, . . . , yn denote the bits of x and y respectively where x1 and258

y1 denotes the highest order bit. Let x′, y′ ∈ {0, 1}n−1 be given by x′ = x2 . . . xn and259

y′ = y2 . . . yn respectively.260

If y1 = 1, then261

x ≥ a ⇐⇒ (x1) ∧ (x′ ≥ y′).262

if y1 = 0, then263

x ≥ a ⇐⇒ (x1) ∨ (x′ ≥ y′).264

In either case, we get by induction that L(GEqa) ≤ 1 + n− 1 = n.265

◀266

The Minimum Formula Size Problem and its Variants. The Minimum Formula Size267

Problem, MFSP, is defined as follows:268

Given: the truth table of a function f : {0, 1}n → {0, 1} and an integer size parameter s.269

Determine: whether L(f) ≤ s.270

The search variant of this problem is Search-MFSP:271

Given: the truth table of a function f : {0, 1}n → {0, 1}.272

Output: an optimal (De Morgan) formula for computing f .273

Similarly, the partial function version Partial-MFSP is defined as:274

Given: the (2n)-length truth table of a partial function γ : {0, 1}n → {0, 1, ⋆} and an275

integer size parameter s.276

Determine: whether L(γ) ≤ s.277

Throughout this paper, we adopt the convention that n denotes the number of inputs of278

a function f : {0, 1}n → {0, 1} and N = 2n denotes the length of the truth table.279

The Exponential Time Hypothesis. The Exponential Time Hypothesis (abbreviated ETH),280

first formulated by Impagliazzo, Paturi, and Zane [20, 21], has been extremely useful for281

proving conditional lower bounds on various problems (see [27] for a survey). Since the282

hypothesis itself is somewhat technical to define, we refer to the above papers for a formal283

definition. However, roughly speaking, it is a slight strengthening of the statement that284

3-SAT cannot be solved deterministically in 2o(n) time.285

8 The Minimum Formula Size Problem is (ETH) Hard

3 Our Main Lemma: Connecting Partial and Total Functions286

To begin, we introduce some notation we will use throughout this section. Let γ : {0, 1}n →287

{0, 1, ⋆} be a partial function. Let g : {0, 1}n → {0, 1} be a total function that agrees with γ.288

For our purposes, any choice of g that agrees with γ will do, but to be concrete we set289

g(x) =
{

0 if γ(x) = 0,
1 otherwise.

290

We also define the total function g⋆ : {0, 1}n → {0, 1} by291

g⋆(x) =
{

1 if γ(x) = ⋆,

0 otherwise.
292

In other words, g⋆ is the indicator function for the event that γ(x) equals ⋆.293

Our main tool for relating the formula complexity of partial and total functions will be294

the following definition.295

▶ Definition 7. The function Extend[γ, s] : {0, 1}n × {0, 1}s × {0, 1}s → {0, 1} is given by296

Extend[γ, s](x, y, z) = [(g(x) ∨ ORs(y)) ∧ ORs(z)] ∨ g⋆(x).297

Observe that in the definition of Extend[γ, s] that g can be replaced with any function298

that agrees with γ and the resulting function Extend[γ, s] will be the same.10 As a result, we299

get the following upper bound on the complexity of Extend[γ, s] essentially by construction300

(note that L(ORs) ≤ s).301

▶ Proposition 8.

L(Extend[γ, s]) ≤ L(γ) + 2s+ L(g⋆).302

Our main lemma will show that if s is sufficiently large and γ is non-constant, then this303

upper bound is actually tight!304

▶ Lemma 9 (Main Lemma). Assume no constant function11 agrees with γ and that s ≥305

min{L(γ), L(g⋆)}. Then306

L(Extend[γ, s]) = L(γ) + L(g⋆) + 2s.307

Before we prove our main lemma, we prove a special case12 where s = 1 and where we308

restrict to formulas that only have one y and z leaf each. It will turn out that the general309

case reduces to this case.310

▶ Lemma 10. Assume no constant function agrees with γ. Then any formula φ that computes311

Extend[γ, 1] and contains exactly one y and exactly one z leaf has size at least312

L(γ) + L(g⋆) + 2313

10 This is because the ∨g⋆(x) term ensures that the function outputs 1 whenever γ is undefined.
11 Note that this non-constant hypothesis is necessary since if γ is the constant 1 function, then

Extend[γ, s](x, y, z) = ORs(z) and L(Extend[γ, s]) = s.
12 Technically, our “special case” is actually incomparable to the main lemma.

R. Ilango 9

Proof. The main idea is that since y and z only occur once in φ, the only way that φ can314

compute Extend[γ, 1] is to mimic the method in our upper bound.315

In more detail, because φ only reads y and z once, we can decompose the formula φ into316

three parts that (informally) correspond to317

a part that reads x and y but not z318

a part that reads x and z but not y, and319

a part that outputs a value based on x and the output of the other two parts.320

Formally, there exist formulas ψy, ψz, and Φ and a gate ▼ ∈ {∧,∨} such that321

φ(x, y, z) = Φ(ψy(x, y)▼ψz(x, z), x),322

and the following properties hold323

ψy(x, y) takes inputs x and y and only has a single y leaf,324

ψz(x, z) takes inputs x and z and only has a single z leaf,325

Φ(w, x) takes inputs w and x and has exactly one w leaf (we need to introduce the new326

variable w to mimic the input that corresponds to the output wire of ψy(x, y)▼ψz(x, z)327

in φ), and328

|φ| = |ψy| + |ψz| + |Φ| − 1 (the minus one comes from the extra w leaf).329

We will show that Φ(ψz(x, 0), x) computes g⋆ and that ψy(x, 0) computes a function that330

agrees with γ. Consequently, we get that13
331

|φ| = |ψy| + |ψz| + |Φ| − 1 ≥ L(γ) + L(g⋆) + 3 − 1 ≥ L(γ) + L(g⋆) + 2,332

as desired.333

It remains to show that Φ(ψz(x, 0), x) computes g⋆ and that ψy(x, 0) computes a function334

that agrees with γ. First, we observe that the formulas ψy, ψz, and Φ only read the w, y and335

z leaves positively (i.e. they do not use the negated version of any of these variables).336

▷ Claim 11. Every w, y or z leaf in ψy, ψz, or Φ is read positively.337

Proof. The only w-leaf appears in Φ and it is read positively by construction (all negations338

in Φ are at the leaf level and in φ the wire corresponding to w in Φ has at least one y leaf339

and one z leaf feeding into it).340

Next, let x0 ∈ {0, 1}n be such that γ(x0) = 0. Then we have that341

y ∧ z = Extend[γ, 1](x0, y, z) = φ(x0, y, z).342

Since y ∧ z is a function that is monotone in y and z and there is exactly one y-leaf and one343

z-leaf in φ and the gate set {∧,∨} is monotone, it follows that y and z must only be read344

positively in Φ. ◁345

Using this monotonicity, we gain some structural information of how Φ, ψy, and ψz act346

when x is fixed to certain values.347

▷ Claim 12. For any fixed x′ ∈ {0, 1}n,348

Φ(w, x′) is either a constant function or equals w,349

ψy(x′, y) is either a constant function or equals y, and350

ψz(x′, z) is either a constant function or equals z.351

13 the plus three in the middle inequality come from counting the number of y, z, and w leaves

10 The Minimum Formula Size Problem is (ETH) Hard

Proof. Note that when x′ is fixed that Φ(w, x′), ψy(x′, y), and ψz(x′, z) are all Boolean352

functions on one bit that are monotone (they are monotone by Claim 11 since w, y, and z are353

all only read positively). The only monotone Boolean functions on one bit are the constant354

functions and the identity function. ◁355

We can then use this structural information to determine how Φ, ψy, and ψz act on inputs356

x where γ(x) ∈ {0, 1} and determine that ▼ = ∧.357

▷ Claim 13. ▼ = ∧. Also, if γ(x′) ∈ {0, 1}, then358

Φ(w, x′) = w,359

ψz(x′, z) = z,360

ψy(x′, y) = γ(x′) ∨ y.361

Proof. Fix any x′ such that γ(x′) ∈ {0, 1}. Then362

(γ(x′) ∨ y) ∧ z = Extend[γ, 1](x′, y, z) = Φ(ψy(x′, y)▼ψz(x′, z), x′).363

Observe that this implies that neither Φ(w, x′) nor ψz(x′, z) can be constant functions, so364

Claim 12 implies Φ(w, x′) = w and ψz(x′, z) = z. Thus,365

(γ(x′) ∨ y) ∧ z = ψy(x′, y)▼z.366

Observe that implies ▼ ̸= ∨, so ▼ = ∧. Consequently, we must have that ψy(x′, y) = γ(x′)∨y.367

◁368

Claim 13 shows that ψy(x, 0) agrees with γ. Thus, it just remains to show that369

Φ(ψz(x, 0), x) computes g⋆.370

If g⋆(x) = 0, then γ(x) ∈ {0, 1}, so by Claim 13371

Φ(ψz(x, 0), x) = ψz(x, 0) = 0.372

On the other hand, if g⋆(x) = 1, then373

1 = Extend[γ, 1](x, 0, 0) = Φ(ψy(x, 0) ∧ ψz(x, 0), x) ≤ Φ(ψz(x, 0), x)374

where the last inequality uses that Φ is monotone in w and that375

ψy(x, 0) ∧ ψz(x, 0) ≤ ψz(x, 0). ◀376

We now prove our main lemma.377

▶ Lemma 9 (Main Lemma). Assume no constant function14 agrees with γ and that s ≥378

min{L(γ), L(g⋆)}. Then379

L(Extend[γ, s]) = L(γ) + L(g⋆) + 2s.380

Proof. The idea is to use Buchfuhrer and Uman’s leaf weighting technique to reduce to381

Lemma 10.382

For contradiction suppose φ is a formula for Extend[γ, s] with less than L(γ) + L(g⋆) + 2s383

leaves. We begin by proving some simple lower bounds on the number of leaves in φ. Observe384

that Extend[γ, s](x, 0s, 0s) = g⋆(x) and Extend[γ, s](x, 0s, 1s) = g(x). Consequently, we have385

14 Note that this non-constant hypothesis is necessary since if γ is the constant 1 function, then
Extend[γ, s](x, y, z) = ORs(z) and L(Extend[γ, s]) = s.

R. Ilango 11

that φ has at least max{L(γ), L(g⋆)} many x-leaves. We also know that φ must have at least386

s y-leaves and at least s z-leaves (in fact at least one leaf labeled by each yi and zi input for387

each i ∈ [s]) since Extend[γ, s](x0, y, z) = ORs(y) ∧ ORs(z) where x0 is such that γ(x0) = 0.388

On the other hand, we can show that there is at least one yi input and at least one zj389

input that are each only read once.390

▷ Claim 14. There exist i, j ∈ [s] such that there is exactly one yi leaf and exactly one zj391

leaf in φ.392

Proof. We only prove the existence of i. (The proof for j is similar.) The number of y leaves393

in φ is at most |φ| minus the number of x-leaves in φ minus the number of z-leaves in φ.394

Using the bounds above, we therefore get that the total number of y-leaves is at most395

L(γ) + L(g⋆) + 2s− 1 − max{L(γ), L(g⋆)} − s ≤ 2s− 1396

where the last equality uses that s ≥ min{L(γ), L(g⋆)}. Thus, by the pigeonhole principle397

there exists an i ∈ [s] such that yi has at most one leaf in φ, and we already established that398

there must be at least one yi leaf. ◁399

Consider the formula φ′ on (n+ 2)-inputs obtained by taking φ and setting all y and z400

inputs except yi and zj to be equal to 0. Then φ′ is a formula for computing Extend[γ, 1] of401

size at most |φ| − 2s+ 2 that reads yi and zi exactly once. By Lemma 10, we get that402

|φ| − 2s+ 2 ≥ L(γ) + L(g⋆) + 2,403

so we get the contradiction that404

|φ| ≥ L(γ) + L(g⋆) + 2s. ◀405

4 Hardness for MFSP406

Ilango [18] showed that the partial function version of MFSP is intractable under ETH.407

▶ Theorem 15 (Ilango [18]). Assume ETH holds. Then no algorithm solves Partial-MFSP in408

deterministic time No(log log N).409

In fact, [18] proves something stronger. Let g⋆ : {0, 1}n → {0, 1} be the function where410

g⋆(x) = 1 if and only if γ(x) = ⋆.411

▶ Theorem 16 (Ilango [18]). Assume ETH holds. Then no algorithm running in deterministic412

time No(log log N) can solve the following promise problem: given a partial function γ satisfying413

L(γ) ≤ 10n and L(g⋆) ≤ O(n10), determine if L(γ) ≤ n.414

Lemma 9 allows us to give a reduction from this promise problem to MFSP.415

▶ Theorem 17. Given access to an oracle computing MFSP, in time poly(N) one can416

solve the following promise problem: Given a partial function γ satisfying L(γ) ≤ 10 logN ,417

determine if L(γ) ≤ logN . Moreover, the queries to the oracle have size parameter at most418

max{L(γ), L(g⋆)} + 1.419

Proof. Let s = logN and s′ = 10 logN . The algorithm R for the reduction is very simple.420

Given a function γ : {0, 1}n → {0, 1}, compute421

∆ = L(Extend[γ, s′]) − L(g⋆) − 2s′.422

12 The Minimum Formula Size Problem is (ETH) Hard

If ∆ ≤ s, then output YES. Otherwise output NO. This completes the description of the423

reduction.424

Since Extend[γ, s(N)] takes 2s+ logN = O(logN) inputs and is efficiently constructable425

given γ, it is easy to see that this algorithm runs in time poly(N) using the oracle to MFSP.426

It remains to argue for correctness. If γ satisfies the promise (i.e., L(γ) ≤ 10 logN), then427

Proposition 8 and Lemma 9 imply that428

L(Extend[γ, s′]) = L(γ) + L(g⋆) + 2s′,429

and therefore that430

∆ = L(γ),431

as desired. ◀432

Combining Theorem 16 and Theorem 17, we get the following lower bound on MFSP433

assuming ETH.434

▶ Corollary 18. Assume ETH holds. Then no deterministic algorithm solves MFSP in time435

No(log log N), even when s is restricted to be at most O(n10).436

5 Solving Search-MFSP using Partial-MFSP437

Our approach in this section builds on the ideas in [17], which shows a better than brute-force438

search-to-decision reduction for MFSP.439

We begin by introducing some notation. Let f, g, h : {0, 1}n → {0, 1}. Say (g,▼, h) is an440

optimal decomposition of f if441

f = g▼h,442

L(f) = L(g) + L(h), and443

g and h are non-constant functions15.444

All non-trivial functions have an optimal decomposition.445

▶ Proposition 19. Let f : {0, 1}n → {0, 1}. If L(f) > 1, then f has an optimal decomposition.446

Proof. Let φ be an optimal formula for f . Without loss of generality, we can assume φ has447

no constant leaves (since L(f) > 1). Also since L(f) > 1, φ has at least two leaves. Therefore,448

we can decompose φ = φg▼φh for some subformulas φg and φh of φ and some ▼ ∈ {∧,∨}.449

Let g and h be the functions computed by φg and φh respectively. Since φ is optimal and450

has no constant leaves, neither g nor h is a constant function.451

It remains to check that L(f) = L(g) + L(h). By construction, we have that452

|φ| = |φg| + |φh|.453

By the optimality of φ, we know that |φf | = L(f). Furthermore, we also know that |φg| = L(g)454

and |φh| = L(h). This is because if any smaller formulas for computing g and h existed,455

then they could be used to replace φg or φh in φ, resulting in the contradiction of a smaller456

formula for computing f . Thus, putting these bounds together, we get L(f) = L(g) + L(h).457

Therefore, (g,▼, h) is an optimal decomposition of f . ◀458

15 This condition is added to avoid “trivial” decompositions like decomposing f as (f, ∨, 0).

R. Ilango 13

We say an optimal decomposition (g,▼, h) of f is an optimal OR decomposition of f if459

▼ = ∨. It is easy to see that if one could find optimal OR decompositions, one could solve460

Search-MFSP.461

▶ Proposition 20. Given access to an oracle O that outputs an optimal OR decomposition for462

a function (if such a decomposition exists), one can solve Search-MFSP in polynomial-time.463

Proof. Note that by De Morgan’s law, (g,∧, h) is an optimal decomposition of f if and only464

if (¬g,∨,¬h) is an optimal decomposition of ¬f . Therefore, by running O on both f and465

¬f , we can find an optimal decomposition of f (if any optimal decomposition exists).466

Consider the following recursive algorithm A for solving Search-MFSP. Given a function467

f , first check if L(f) ≤ 1 (via brute force). If so, then output an optimal formula for f via468

brute force. Otherwise, use the oracle O to find an optimal decomposition (g,▼, h) for f .469

Finally, output the formula ϕg▼ϕh where ϕg = A(g) and ϕh = A(h). This completes the470

description for A.471

It is easy to see that this algorithm runs in polynomial-time and solves Search-MFSP. ◀472

For the next definition and the remainder of this paper, it will be useful to extend the473

OR function and the AND function to operate on inputs in {0, 1, ⋆}, in the natural way.474

Formally, if a, b ∈ {0, 1, ⋆}, then we let475

a ∨ b =

1 if 1 ∈ {a, b},
0 if {0} = {a, b},
⋆ otherwise,

476

and477

a ∧ b =

0 if 0 ∈ {a, b},
1 if {1} = {a, b},
⋆ otherwise.

478

We now make our main definition for the section. This definition is a generalization of479

the Select function in [17] and is carefully chosen so that Proposition 22 and Lemma 23 hold.480

481

▶ Definition 21. Let f : {0, 1}n → {0, 1} and γ, ζ : {0, 1}n → {0, 1, ⋆}. Then OrSelect[f, γ, ζ] :482

{0, 1} × {0, 1}n × {0, 1} × {0, 1} → {0, 1, ⋆} is given by483

OrSelect[f, γ, ζ](w, x, y, z) =
{
f(x) if (w, y, z) = (0, 1, 1),
((γ(x) ∨ w) ∧ y) ∨ (ζ(x) ∧ z) otherwise.

484

We show that the complexity of OrSelect[f, g, h] is related to optimal OR decompositions.485

486

▶ Proposition 22. If L(f) > 1 and (g,∨, h) is an optimal decomposition for f , then487

L(OrSelect[f, g, h]) = L(f) + 3.488

Proof. Let ϕ = ϕg ∨ ϕh be an optimal formula for f where ϕg computes g and ϕh computes489

h.490

Then the formula491

((ϕg(x) ∨ w) ∧ y) ∨ (ϕh(x) ∧ z)492

14 The Minimum Formula Size Problem is (ETH) Hard

computes OrSelect[f, g, h]. This gives us the desired upper bound.493

For the lower bound, we know that any formula for OrSelect[f, g, h] must have at least494

L(f) many x-leaves since OrSelect[f, g, h] computes f when (w, y, z) = (0, 1, 1). On the other495

hand, since g and h are both non-constant16, OrSelect[f, g, h] depends on each of w, y, and496

z, so we need at least one w-leaf, one y-leaf, and one z-leaf. In total this gives L(f) + 3497

leaves. ◀498

Our key insight is that one can prove a partial converse to Proposition 22.499

▶ Lemma 23. Let f : {0, 1}n → {0, 1} and γ, ζ : {0, 1}n → {0, 1, ⋆}. Assume there is a500

x̃ ∈ {0, 1}n such that f(x̃) = ζ(x̃) = 1 and γ(x̃) = 0. If501

L(OrSelect[f, γ, ζ]) ≤ L(f) + 3,502

then there exist total functions g, h : {0, 1}n → {0, 1} agreeing with γ and ζ respectively such503

that (g,∨, h) is an optimal decomposition for f .504

Proof. Suppose φ is a formula for computing OrSelect[f, γ, ζ] with at most L(f) + 3 leaves.505

We will show that φ can be decomposed as506

φ(w, x, y, z) = ψw,y(w, x, y) ∨ ψz(x, z)507

for some formulas ψw,y and ψz satisfying:508

ψw,y has exactly one w-leaf and exactly one y-leaf,509

ψz has exactly one z-leaf, and510

|φ| = |ψw,y| + |ψz|.511

Assuming we could decompose φ this way, we show how to prove the lemma. Recall the512

definition513

OrSelect[f, γ, ζ](w, x, y, z) =
{
f(x) if (w, y, z) = (0, 1, 1),
((γ(x) ∨ w) ∧ y) ∨ (ζ(x) ∧ z) otherwise

.514

For the formula ψw,y(w, x, y) ∨ ψz(x, z) to compute OrSelect[f, γ, ζ], observe that it must be515

the case that ψw,y(w, x, 0) = 0 and ψz(x, 0) = 0 since516

0 = OrSelect[f, γ, ζ](w, x, 0, 0) = ψw,y(w, x, 0) ∨ ψz(x, 0).517

Consequently, we get that518

γ(x) = OrSelect[f, γ, ζ](0, x, 1, 0) = ψw,y(0, x, 1) ∨ ψz(x, 0) = ψw,y(0, x, 1),519

so ψw,y(0, x, 1) agrees with γ. Similarly,520

ζ(x) = OrSelect[f, γ, ζ](w, x, 0, 1) = ψw,y(w, x, 0) ∨ ψz(x, 1) = ψz(x, 1),521

so ψz(x, 1) agrees with ζ. Finally, we know that522

ψw,y(0, x, 1) ∨ ψz(x, 1) = OrSelect[f, γ, ζ](0, x, 1, 1) = f(x).523

Summarizing, we know the function g computed by ψw,y(0, x, 1) agrees with γ, the function524

h computed by ψz(x, 1) agrees with ζ, and that g ∨ h = f . This proves the lemma.525

16 To see why this non-constant hypothesis is necessary, observe that if g were, for example, the constant
one function, then the output of OrSelect[f, g, h] would not depend on w.

R. Ilango 15

It remains to show that we can decompose φ as above. Without loss of generality we526

can assume φ has no constant leaves. Let ▼ ∈ {∧,∨} be the top/output gate of φ. Then we527

can write φ(w, x, y, z) = φL(w, x, y, z)▼φR(w, x, y, z) where φL and φR are subformulas of528

φ with disjoint leaves.529

By a similar argument as in the proof of Proposition 22, we know that φ has exactly L(f)530

x-leaves and one w, y, and z leaf each. As a result, we know that w, y, z are each only read531

by exactly one of φL and φR. Let L ⊆ {w, y, z} be the subset of w, y, and z leaves that is532

read by φL, and let R ⊆ {w, y, z} be the subset of w, y, z leaves that is read by φR. Observe533

that L ∪R = {w, y, z} and L ∩R = ∅. Without loss of generality, assume that |L| > |R| and534

therefore that |R| ≤ 1.535

First, we show that |R| = 1.536

▷ Claim 24.

|R| ≠ 0.537

Proof. For contradiction, suppose that |R| = 0. Then the function computed by φR(w, x, y, z)538

only depends on input x and not inputs w, y, and z. Since φ is an optimal formula539

for OrSelect[f, γ, ζ] and φ has no constant leaves, it follows that φR(w, x, y, z) does not540

compute a constant function. Therefore there exist x0 ∈ {0, 1}n and x1 ∈ {0, 1}n such that541

φR(w, x0, y, z) = 0 and φR(w, x1, y, z) = 1 for all w, y, z ∈ {0, 1}. Now, either ▼ = ∧ or542

▼ = ∨. If ▼ = ∧, then543

1 = OrSelect[f, γ, ζ](w, x0, y, z) = φL(w, x0, y, z) ∧ φR(w, x0, y, z) = 0544

if (w, y, z) = (1, 1, 1), which is a contradiction. If ▼ = ∨, then545

0 = OrSelect[f, γ, ζ](w, x1, y, z) = φL(w, x1, y, z) ∨ φR(w, x1, y, z) = 1546

if (w, y, z) = (0, 0, 0), which is a contradiction. ◁547

Recall, x̃ ∈ {0, 1}n is such that f(x̃) = ζ(x̃) = 1 and γ(x̃) = 0. Thus,548

φL(w, x̃, y, z)▼φR(w, x̃, y, z) = OrSelect[f, γ, ζ](w, x̃, y, z) = (w ∧ y) ∨ z.549

Now, since φL only reads two inputs from the set {w, y, z} and since φR only reads one550

input from the set {w, y, z}, we know that φL(w, x̃, y, z) computes a function that depends551

on both inputs in L and φR computes a function that depends on the input in R.552

On the other hand, since OrSelect[f, γ, ζ] is function that is monotone in each of w, y,553

and z and φ reads inputs w, y, and z each exactly once, we know that φ reads each input554

w, y, and z exactly once positively. Consequently, we get that φL computes a function that555

is monotone with respect to the variables in L, and that φR computes a function that is556

monotone with respect to the variables in R. Therefore, φR(w, x̃, y, z) is a monotone function557

on one bit (the input in R) that depends on the input in R. The only monotone Boolean558

function on one bit that depends on its input is the identity function, so φR(w, x̃, y, z) just559

outputs r, where R = {r}.560

Similarly, φL(w, x̃, y, z) is a monotone function on two bits (the two inputs in L) that561

depends on both inputs in L. Consequently, we know that φL(w, x̃, y, z) computes the562

function ℓ1▼Lℓ2 for some ▼L ∈ {∧,∨}, where L = {ℓ1, ℓ2}. This is because the only563

monotone Boolean functions on two bits that depend on both inputs are the AND function564

and the OR function.565

16 The Minimum Formula Size Problem is (ETH) Hard

At this point, we have determined that566

(w ∧ y) ∨ z = φL(w, x̃, y, z)▼φR(w, x̃, y, z) = (ℓ1▼Lℓ2)▼r,567

where ▼L,▼ ∈ {∧,∨} and {ℓ1, ℓ2, r} = {w, y, z}. Observe that the only way for this to occur568

is if R = {z}, ▼ = ∨, {ℓ1, ℓ2} = L = {w, y}, which is what we wanted to show.569

◀570

▶ Theorem 25. There is a deterministic polynomial time algorithm that given an oracle571

Partial-MFSP and a function f with L(f) > 1 finds an optimal OR decomposition of f , if572

one exists.573

Proof. At a high-level the idea is as follows. Recall, the search to decision reduction for SAT574

that works by building a satisfying assignment “bit by bit.” Lemma 23 gives us a way to575

find an optimal OR decomposition in a similar “bit by bit” way by, roughly, starting with576

completely undefined γ and ζ and then filling them in one bit at a time, while making sure577

L(OrSelect[f, γ, ζ]) ≤ L(f) + 3 and hence that we always fill in a bit that is in an optimal OR578

decomposition.579

In more detail, the algorithm A on input f : {0, 1}n → {0, 1} works as follows. For each580

x̃ ∈ {0, 1}n where f(x̃) = 1 run the following subroutine:581

1. Set γ : {0, 1}n → {0, 1, ⋆} and ζ : {0, 1}n → {0, 1, ⋆} to be completely undefined (i.e.582

output ⋆) everywhere except for at x̃, where γ(x̃) = 0 and ζ(x̃) = 1.583

2. If L(OrSelect[f, γ, ζ]) > L(f) + 3, then skip the remainder of this subroutine and go to584

the next value of x̃. Otherwise, continue to (3).585

3. While γ is not a total function:586

a. Let x ∈ {0, 1}n be the lexicographically first x such that γ(x) = ⋆.587

b. Set γ(x) to some Boolean value b ∈ {0, 1} such that L(OrSelect[f, γ, ζ]) ≤ L(f) + 3.588

4. While ζ is not a total function:589

a. Let x ∈ {0, 1}n be the lexicographically first x such that ζ(x) = ⋆.590

b. Set ζ(x) to some Boolean value b ∈ {0, 1} such that L(OrSelect[f, γ, ζ]) ≤ L(f) + 3.591

5. Output the OR decomposition (γ,∨, ζ) of f .592

Finally, output ⊥ if we have iterated through all such x̃ and not output an answer. This593

completes the description of the algorithm A. It is easy to see that this algorithm runs in594

polynomial time. It remains to argue for correctness.595

We first argue that if A does not output ⊥, then it outputs a (valid) OR decomposition of596

f . This is because if A does not output ⊥, then the algorithm must output total functions γ597

and ζ such that L(OrSelect[f, γ, ζ]) ≤ L(f) + 3 and such that f(x̃) = ζ(x̃) = 1 and γ(x̃) = 0.598

Lemma 23 then implies that (γ,∨, ζ) is an optimal OR decomposition for f .599

It remains to show that if f has an optimal OR decomposition then, the algorithm does600

not output ⊥. Let (g,∨, h) be an optimal OR decomposition of f . Since f = g ∨h and g ̸= h601

(if g = h, this would contradict optimality), there must exist a x̃ such that 1 = f(x̃) = h(x̃)602

and 0 = g(x̃).603

Consider the above subroutine on this x̃. At step (2) in the subroutine, we have that604

L(OrSelect[f, γ, ζ]) ≤ L(OrSelect[f, g, h]) ≤ L(f) + 3605

where the middle inequality comes from g and h agreeing with γ and ζ respectively, and606

where the last inequality comes from by Proposition 22. Thus, the subroutine will reach607

(3). At this point, the only way the subroutine would not output an OR decomposition608

is if step (3b) or (4b) failed. We show that step (3b) can never fail (the proof for (4b) is609

R. Ilango 17

similar). Step (3b) will fail if there does not exist a b ∈ {0, 1} to set γ(x) to such that610

L(OrSelect[f, γ, ζ]) ≤ L(f) + 3. This is not possible because Lemma 23 implies that there611

must be an optimal decomposition (g′,∨, h′) such that g agrees with γ and ζ agrees with h′.612

Combining this with Proposition 22’s upper bound that L(OrSelect[f, g′, h′]) ≤ L(f) + 3, we613

get that setting b = g′(x) will work. ◀614

6 A Search to Decision Reduction for MFSP615

In this section, we show that MFSP has a polynomial-time search-to-decision reduction. The616

key to proving this will be showing that the algorithm in Theorem 25 actually only makes617

queries to the Partial-MFSP oracle of a certain type: partial functions where the locations of618

the ⋆-values have low circuit complexity.619

▶ Lemma 26. Let Q : {0, 1}n → {0, 1, ⋆} be a (partial) function that the algorithm in620

Theorem 25 generates as a query to its Partial-MFSP oracle. Let Q⋆ : {0, 1}n → {0, 1} be621

the function where Q⋆(x) = 1 if and only if Q(x) = ⋆. Then L(Q⋆) ≤ cn for some universal622

integer constant c ≥ 1.623

Proof. Using the notation in the proof of Theorem 25, the algorithm only makes two types624

of queries to the oracle. It queries L(f), or it queries L(OrSelect[f, γ, ζ]). f is a total function,625

so the lemma vacuously holds in that case. So now suppose Q = OrSelect[f, γ, ζ].626

Observe that the following invariant is held throughout each subroutine: there are integers627

iγ ∈ {0, . . . , N + 1} and iζ ∈ {0, . . . , N + 1} such that for all x628

γ(x) = ⋆ if and only if x ̸= x̃ and x ≥ iγ , and629

ζ(x) = ⋆ if and only if x ̸= x̃ and x ≥ iζ .630

This invariant clearly holds at the start of the subroutine (since the only non-star value631

is at x̃), and this invariant is maintained because the values set in γ and ζ are always the632

lexicographically first undefined value.633

Consequently, using the linear formula upper bound on integer comparison in Proposition 6634

and the fact that one can check whether whether x ̸= x̃ with a linear-sized formula, we get635

linear formula size upper bounds on the functions γ⋆, ζ⋆ : {0, 1}n → {0, 1} given by γ⋆(x) = 1636

if and only if γ(x) = ⋆ and ζ⋆(x) = 1 if and only if ζ(x) = ⋆. In other words, L(γ⋆) ≤ O(n)637

and L(ζ⋆) ≤ O(n).638

Now we bound the complexity of the function Q⋆ that indicates whether639

OrSelect[f, γ, ζ](w, x, y, z) = ⋆.640

Recall,641

OrSelect[f, γ, ζ](w, x, y, z) =
{
f(x) if (w, y, z) = (0, 1, 1),
((γ(x) ∨ w) ∧ y) ∨ (ζ(x) ∧ z) otherwise.

642

Observe that all of the following hold:643

if (w, y, z) = (0, 1, 1), then Q⋆(w, x, y, z) = 0 because OrSelect[f, γ, ζ](w, x, y, z) = f(x),644

if (w, y, z) = (1, 1, 1), then Q⋆(w, x, y, z) = 0 because OrSelect[f, γ, ζ](w, x, y, z) = 1,645

if (y, z) = (0, 0), then Q⋆(w, x, y, z) = 0 because OrSelect[f, γ, ζ](w, x, y, z) = 0,646

if (y, z) = (0, 1), then Q⋆(w, x, y, z) = ζ⋆(x) because OrSelect[f, γ, ζ](w, x, y, z) = ζ(x),647

and648

if (y, z) = (1, 0), then Q⋆(w, x, y, z) = γ⋆(x) ∧ (¬w) because OrSelect[f, γ, ζ](w, x, y, z) =649

γ(x) ∨ w.650

18 The Minimum Formula Size Problem is (ETH) Hard

As a result, we can upper bound the complexity of Q⋆
651

L(Q⋆) = O(L(γ⋆) + L(ζ⋆) + 1) = O(n),652

as desired. ◀653

We now observe that any query Q made to a Partial-MFSP oracle where Q⋆ has low654

formula complexity can be answered using a MFSP oracle by utilizing the Extend[·, ·] function.655

▶ Proposition 27. Let Q : {0, 1}n → {0, 1, ⋆}, Q⋆ : {0, 1}n → {0, 1}, and c be as in the656

statement of Lemma 26. Then657

L(Q) = L(Extend[Q, cn]) − L(Q⋆) − 2cn658

Proof. Apply Lemma 9 and use the upper bound L(Q⋆) ≤ cn proved in Lemma 26. ◀659

This gives us a way to compute the complexity of a partial function Q using only total660

functions.661

▶ Theorem 28. There is a deterministic polynomial time algorithm that given the truth table662

of a function f : {0, 1}n → {0, 1}, finds an optimal formula for f .663

Proof. By Proposition 20, it suffices to show how to find an optimal OR decomposition of a664

given function (if one exists). Theorem 25 shows how to find optimal OR decompositions665

using an oracle to Partial-MFSP, and Proposition 27 shows that the queries Q made to the666

Partial-MFSP oracle can be efficiently replaced by queries to a MFSP oracle on Extend[Q, cn]667

and Q⋆. Note that the number of inputs to Extend[Q, cn] is n+2cn = O(n). As a result, both668

the truth table of Q⋆ and the truth table of Extend[Q, cn] can be computed in polynomial-time669

given Q. This proves the theorem. ◀670

References671

1 Eric Allender. The new complexity landscape around circuit minimization. In Language and672

Automata Theory and Applications - 14th International Conference, LATA 2020, Milan, Italy,673

March 4-6, 2020, Proceedings, volume 12038 of Lecture Notes in Computer Science, pages674

3–16. Springer, 2020.675

2 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In Erzsébet676

Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foundations of677

Computer Science 2014, pages 25–32, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.678

3 Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Minimizing679

DNF formulas and AC0d circuits given a truth table. In 21st Annual IEEE Conference on680

Computational Complexity (CCC), pages 237–251, 2006.681

4 Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit minimization682

and related problems. ACM Trans. Comput. Theory, 11(4):27:1–27:27, 2019. doi:10.1145/683

3349616.684

5 Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The pervasive reach685

of resource-bounded kolmogorov complexity in computational complexity theory. Journal of686

Computer and System Sciences, 77(1):14 – 40, 2011.687

6 David Buchfuhrer and Christopher Umans. The complexity of boolean formula minimization.688

J. Comput. Syst. Sci., 77(1):142–153, 2011.689

7 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.690

Learning algorithms from natural proofs. In Proceedings of the 31st Conference on Computa-691

tional Complexity, 2016.692

https://doi.org/10.1145/3349616
https://doi.org/10.1145/3349616
https://doi.org/10.1145/3349616

R. Ilango 19

8 Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and Rahul693

Santhanam. Beyond natural proofs: Hardness magnification and locality. In Thomas Vidick,694

editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January695

12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 70:1–70:48. Schloss696

Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.70.697

9 Sebastian Lukas Arne Czort. The complexity of minimizing disjunctive normal form formulas.698

Master’s thesis, University of Aarhus, 1999.699

10 Vitaly Feldman. Hardness of approximate two-level logic minimization and PAC learning with700

membership queries. In 38th Annual ACM Symposium on Theory of Computing (STOC),701

pages 363–372, 2006.702

11 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Ko-703

lokolova, and Avishay Tal. AC0[p] lower bounds against MCSP via the coin problem. In704

ICALP, volume 132 of LIPICS, pages 66:1–66:15, 2019.705

12 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In 59th706

IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 247–258, 2018.707

13 Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. NP-hardness of minimum708

circuit size problem for OR-AND-MOD circuits. In 33rd Computational Complexity Conference709

(CCC), volume 102, pages 5:1–5:31, 2018.710

14 Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle.711

In Ran Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29712

to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl -713

Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.18.714

15 John M. Hitchcock and A. Pavan. On the NP-completeness of the minimum circuit size715

problem. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference716

on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015),717

volume 45 of Leibniz International Proceedings in Informatics (LIPIcs), pages 236–245, Dag-718

stuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://719

drops.dagstuhl.de/opus/volltexte/2015/5661, doi:10.4230/LIPIcs.FSTTCS.2015.236.720

16 Rahul Ilango. Approaching MCSP from above and below: Hardness for a conditional variant721

and AC0[p]. In 11th Innovations in Theoretical Computer Science Conference (ITCS), volume722

151, pages 34:1–34:26, 2020.723

17 Rahul Ilango. Connecting perebor conjectures: Towards a search to decision reduction for724

minimizing formulas. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,725

CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of726

LIPIcs, pages 31:1–31:35. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:727

10.4230/LIPIcs.CCC.2020.31.728

18 Rahul Ilango. Constant depth formula and partial function versions of MCSP are hard. In729

61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,730

NC, USA, November 16-19, 2020, pages 424–433. IEEE, 2020. doi:10.1109/FOCS46700.2020.731

00047.732

19 Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. NP-hardness of circuit minimization for733

multi-output functions. In 35th Computational Complexity Conference (CCC), volume 169,734

pages 22:1–22:36, 2020.735

20 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.736

Sci., 62(2):367–375, 2001.737

21 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly738

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.739

22 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In 32nd Annual ACM740

Symposium on Theory of Computing (STOC), pages 73–79, 2000.741

23 Subhash Khot and Rishi Saket. Hardness of minimizing and learning DNF expressions. In742

49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 231–240,743

2008.744

https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.4230/LIPIcs.CCC.2016.18
http://drops.dagstuhl.de/opus/volltexte/2015/5661
http://drops.dagstuhl.de/opus/volltexte/2015/5661
http://drops.dagstuhl.de/opus/volltexte/2015/5661
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236
https://doi.org/10.4230/LIPIcs.CCC.2020.31
https://doi.org/10.4230/LIPIcs.CCC.2020.31
https://doi.org/10.4230/LIPIcs.CCC.2020.31
https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.1109/FOCS46700.2020.00047

20 The Minimum Formula Size Problem is (ETH) Hard

24 Leonid Levin. Hardness of search problems. URL: https://www.cs.bu.edu/fac/lnd/745

research/hard.htm.746

25 Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In 2020 IEEE747

61st Annual Symposium on Foundations of Computer Science (FOCS), pages 1243–1254, 2020.748

doi:10.1109/FOCS46700.2020.00118.749

26 Yanyi Liu and Rafael Pass. Cryptography from sublinear-time average-case hardness of750

time-bounded kolmogorov complexity. Electron. Colloquium Comput. Complex., 28:55, 2021.751

URL: https://eccc.weizmann.ac.il/report/2021/055.752

27 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential753

time hypothesis. Bull. EATCS, 105:41–72, 2011.754

28 William J. Masek. Some NP-complete set covering problems. Unpublished Manuscript, 1979.755

29 Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-756

bounded compression imply strong separations of complexity classes. In Moses Charikar and757

Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of758

Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1215–1225. ACM, 2019.759

doi:10.1145/3313276.3316396.760

30 Cody D. Murray and R. Ryan Williams. On the (non) NP-hardness of computing circuit761

complexity. Theory of Computing, 13(1):1–22, 2017.762

31 Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-of-763

the-art lower bounds. In Amir Shpilka, editor, 34th Computational Complexity Conference,764

CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 27:1–27:29.765

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CCC.2019.27.766

32 Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems. In767

Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science,768

FOCS 2018, Paris, France, October 7-9, 2018, pages 65–76. IEEE Computer Society, 2018.769

doi:10.1109/FOCS.2018.00016.770

33 R. Ostrovsky and A. Wigderson. One-way functions are essential for non-trivial zero-knowledge.771

In [1993] The 2nd Israel Symposium on Theory and Computing Systems, pages 3–17, 1993.772

doi:10.1109/ISTCS.1993.253489.773

34 Jan Pich and Rahul Santhanam. Why are proof complexity lower bounds hard? In 2019 IEEE774

60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1305–1324, 2019.775

doi:10.1109/FOCS.2019.00080.776

35 Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,777

1997.778

36 Hanlin Ren and Rahul Santhanam. A relativization perspective on meta-complexity. Electron.779

Colloquium Comput. Complex., page 89, 2021. URL: https://eccc.weizmann.ac.il/report/780

2021/089.781

37 Michael Saks and Rahul Santhanam. Circuit lower bounds from NP-hardness of MCSP under782

turing reductions. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,783

CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of784

LIPIcs, pages 26:1–26:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:785

10.4230/LIPIcs.CCC.2020.26.786

38 Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. In 11th787

Innovations in Theoretical Computer Science Conference, ITCS, volume 151 of LIPIcs, pages788

68:1–68:26, 2020.789

39 Boris A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches)790

algorithms. IEEE Annals of the History of Computing, 6(4):384–400, 1984.791

40 Christopher Umans, Tiziano Villa, and Alberto L. Sangiovanni-Vincentelli. Complexity of792

two-level logic minimization. IEEE Trans. on CAD of Integrated Circuits and Systems,793

25(7):1230–1246, 2006.794

https://www.cs.bu.edu/fac/lnd/research/hard.htm
https://www.cs.bu.edu/fac/lnd/research/hard.htm
https://www.cs.bu.edu/fac/lnd/research/hard.htm
https://doi.org/10.1109/FOCS46700.2020.00118
https://eccc.weizmann.ac.il/report/2021/055
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1109/ISTCS.1993.253489
https://doi.org/10.1109/FOCS.2019.00080
https://eccc.weizmann.ac.il/report/2021/089
https://eccc.weizmann.ac.il/report/2021/089
https://eccc.weizmann.ac.il/report/2021/089
https://doi.org/10.4230/LIPIcs.CCC.2020.26
https://doi.org/10.4230/LIPIcs.CCC.2020.26
https://doi.org/10.4230/LIPIcs.CCC.2020.26

	1 Introduction
	1.1 How Hard is MCSP?
	1.2 The Minimum Formula Size Problem
	1.3 Results and Discussion
	1.4 Further Related Work

	2 Preliminaries
	3 Our Main Lemma: Connecting Partial and Total Functions
	4 Hardness for MFSP
	5 Solving Search-MFSP using Partial-MFSP
	6 A Search to Decision Reduction for MFSP

